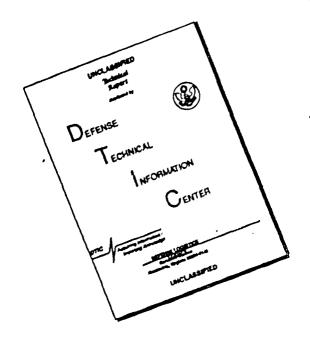
AD-A180 485

OTIC_EILE_COPY

AFWAL-TR-85-2118

SHALE JP-4 ADDITIVE EVALUATION

Teresa A. Boos Timothy L. Dues Fuels Branch Fuels and Lubrication Division


October 1986

Final Report for Period September 1983 - May 1985

Approved for Public Release; Distribution Unlimited

AERO PROPULSION LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6563

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE

When Goverment drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releaseable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

TIMOTHY L. DUES, Chemical Engineer

Fuels and Lubrication Division

Aero Propulsion Laboratory

Fuels Branch

TERESA A. BOOS, Chemical Engineer

Fuels Branch

Fuels and Lubrication Division
Aero Propulsion Laboratory

ARTHUR V. CHURCHILL, Chief

Fuels Branch

Fuels and Lubrication Division Aero Propulsion Laboratory

FOR THE COMMANDER

POSTO P. BOTTERI, Assistant Chief

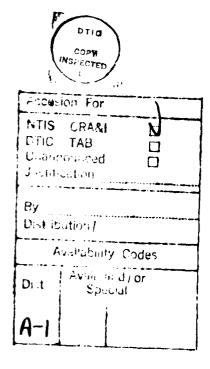
Fuc's and Eubrication Division Aero Prepulsion Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/POSF, Wright-Patterson AFB, Ohio 45433-6563 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

18. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE M	ARKINGS							
28. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A Approved fo	or Public I	Release;						
2b. DECLASSIFICATION/DOWNGRADING SCHED	ULE	Distributio	on Unlimite	ed 						
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING OR	GANIZATION R	EPORT NUMBER(S)					
AFWAL-TR-85-2118										
6. NAME OF PERFORMING ORGANIZATION Aero Propulsion Laboratory	6b. OFFICE SYMBOL (If applicable) AFWAL/POSF	7a. NAME OF MONIT	FORING ORGAN	IZATION						
6c. ADDRESS (City, State and ZIP Code) AF Wright Aeronautical Laborat Wright-Patterson AFB OH 45433		7b. ADDRESS (City, State and ZIP Code)								
6. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER								
Sc. ADDRESS (City, State and ZIP Code)	<u></u>	10. SOURCE OF FUNDING NOS.								
		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT					
11. TITLE (Include Security Classification)		63215F	00							
Shale JP-4 Additive Evaluation	(Unclassified)			<u> </u>	<u> </u>					
12 PERSONAL AUTHOR(S) Teresa A. Boos and Timothy L.	Dues									
13a. TYPE OF REPORT 13b. TIME C	OVERED	14. DATE OF REPOR) 15. PAGE CO	TAUC					
	983 to May 85	Octobe	er 1986							
18. SUPPLEMENTARY NOTATION	·									
17. COSATI CODES	18 SUPSECT TERMS (C	ontinue on reverse if ne	cessary and ident	ify by block number	,					
GROUP SUB. GR.	Shale, JP74, an	tioxidants, co	rrosion ir	hibitor, fue	lubricityرا					
	fuel additives	, rue i system	icing, inni	bitors, metai	Scienciivato					
A SASTRACT (Continue on reverse if necessary and A shale JP-4 jet fuel was obtained. Combinations of additive samples. The thermal and storacharacteristics of the samples	ige stability, l were studied ove	lubricity, con er 15 months.	ductivity	and water se	eparation					
The additives chosen were nine concentration, and four corros The limits were set by the JP-4 Fuel System Icing Inhibitor (Five-gallon test samples were sand corrosion inhibitor samples FSII, anti-static additive, and other conditions, one in cold state (See Reverse)	ion inhibitors, 4 specification. SII), anti-stat stored for 15 mo in 70°F - 80°F maximum antioxi torage and one a	at the minim . Other additic additive, onths: antiox room storage.	num and ma lives in t JFA-5 and idant samp Two drum osion inhi ditions (o	ximum concer he test prog d metal dead oles in a ll s of fuel co bitor were utdoors).	itration. ram were itivator. O°F oven ntaining					
UNCLASSIFIED/UNLIMITED 💢 SAME AS RPT.		UNCLASSI		SA HON	Ÿ					
TERESA A. BOOS		226 TELEPHONE NUMBER (Include Area Code) 513-255-6390 AFWAL/POSF								

18. SUBJECT TERMS:


nntistatic additive, JFA-5, peroxides, thermal stability, existent gum, water separation, minisonic separometer, naphthalenes, storage stability.

19. ABSTRACT

petroleum JP-4 sample was included for comparison purposes. Samples were tested at zero, three, nine and 15 months.

For all test samples, at all test times, the shale fuel met the JP-4 specification requirements for thermal stability (JFTOT), existent gum, particulates and filtration time. Few fuels met the electrical conductivity requirement. This was attributed to the several changes in sample containers. For water separation index, the non-specification minisonic test was used. Using 70 as a minimum requirement, only fuels containing maximum corrosion inhibitor and JFA-5 had failing ratings. All fuels containing maximum corrosion inhibitor did have passing ratings at some time periods.

Other nonspecification tests included peroxides, lubricity and naphthalenes. A minimum amount of antioxidant controlled peroxides to eight parts per million for the 15-month test. Fuel lubricating quality, as determined by the Ball-on-Cylinder Lubricity Evaluator, was poor or marginal (greater than 0.36mm Wear Scar Diameter) for fuels containing the minimum amount of corrosion inhibitor. A maximum amount of corrosion inhibitor generally brought the lubricity up to a "good" rating (less than 0.36mm WSD). No naphthalenes were found in the original fuel.

FOREWORD

The Shale JP-4 Additive Evaluation was created as a part of the "Shale Oil Fuel Acceptance Program," established by the Air Force under the program element "Aviation Turbine Fuel Technology," PE63215F. The goal of the acceptance program was to assure the safe use of shale oil derived turbine fuels in operational USAF aircraft and fuel handling systems.

This report describes the additive test fuel origin, additive and fuel amounts, storage conditions, tests performed, and discussion of results and conclusions.

The additive evaluation was carried out by the Fuels Branch of the Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. The work was performed under Work Units 24801200 and 30480591. Teresa Boos was the project engineer.

Special thanks go to:

STATES OF SECURICAL SECURICAL SECURICAL PROPERTY OF SECURICAL SECURICAL PROPERTY OF SECU

Mr John Yount - SA-ALC/SFTLA, Energy Management Laboratory for performing specification testing,

Mr Eddie French - DFSC-AF, for fuel supply and transportation,

Ms Ellen Steward - AFWAL/POSF - for coordinating samplings, tests, and data,

All of the additive vendors, who provided samples free of charge.

TABLE OF CONTENTS

SECT	TION		PAGE
I.	INTRODUCTION	, '*- ·	1
II.	TEST PARAMETERS		2
	1. Additives		2
	2. Additive Amounts		4
	3. Test Conditions/Sampling Intervals		7
	4. Fuel Property Tests		8
III.	TEST IMPLEMENTATION		9
	1. Origin of Test Fuel		9
	2. Sample Preparation		12
	3. Test Fuel Sampling		14
IV.	TEST DATA AND ANALYSIS		16
	1. Thermal Stability (JFTOT)		16
	2. Particulate/Filtration Time		21
	3. Existent Gum		21
	4. Peroxides		23
	5. Water Separation		25
	6. Lubricity		31
	7. Electrical Conductivity		41
	8. Naphthalenes		42
	9. Specification Samples		10

TABLE OF CONTENTS (CON'T)

SEC	TION		PAGE
٧.	CONCLUSIONS		44
	REFERENCES		46
	APPENDIX A	Drum to Test Sample Relationship	47
	APPENDIX B	Test Results by Test	49
	APPENDIX C	Test Results by Sample Number	65
	APPENDIX D	Total Insolubles Test Procedure	113

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Test Series I Samples	5
2	Test Series II Samples	6
3	Series I Control Fuels B.O.C.L.E. Results	34
4	Minimum Corrosion Inhibitor B.O.C.L.E. Results	35
5	Maximum Corrosion Inhibitor B.O.C.L.E. Results	36
6	CI1 B.O.C.L.E. Results	37
7	CI3 B.O.C.L.E. Results	38
8	CI4 B.O.C.L.E. Results	39
9	CI2 B.O.C.L.E. Results	40

LIST OF TABLES

TABLE		PAGE
1	Antioxidants	3
2	Raw Shale/Petroleum Fuel Properties	10
3	Drum Sample Additive Content	13
4	Series I - JFTOT Fails at Original Test Temperature	17
5	Series II - JFTOT Fails at 15 Months	20
6	Series II - No JFTOT Fails at Original Temperature	22
7	Fuels With Peroxides One Through Eight	26
	(ppm) at 15 Months	
7 A	Relationship of Antioxidant Structures to Peroxides	27
8	Fuels Failing Water Separation Test	30
9	Specification Fuel Test Results	43
B-1	Series I (Room Temperature) - JFTOT Test Results	50
B-2	Series II (110°F Storage) - JFTOT Test Results	52
B-3	Particulate/Filtration Time Test Results	54
B-4	Existent Gum Test Results	55
B-5	Peroxide Test Results	56
B-6	Minisonic Test Results	58
B-7	۹.0 C.L.E. Test Results	59
B-8	Drum Conductivity Test Results	61
B-9	Test Sample Conductivity Test Results	62

I. INTRODUCTION

In November 1982, the Fuels Branch of the Aero Propulsion Laboratory began a program with the Caribou Four Corners Refinery of Woods Cross UT to refine crude shale oil to meet JP-4 jet fuel requirements under specification MIL-T-5624L. This fuel was used in engine test programs and an additive evaluation program to prove the viability of shale JP-4 as an alternative to petroleum JP-4. This report discusses the additive evaluation program, the test results, and conclusions.

THE PROPERTY OF THE PROPERTY O

The test was designed to evaluate the effects of various fuel additives on the storage and performance characteristics of shale refined JP-4 fuel. One major portion of the test concentrated on the ability of several specific antioxidants to prevent degradation of the fuel during storage. This degradation was monitored through use of thermal stability breakpoint temperatures, existent gum levels, peroxide levels and particulates. Another portion of the program evaluated fuel lubricity and the effect of additives, including several corrosion inhibitors, on fuel lubricity. In addition, the effect of metal deactivator and JFA-5 on fuel properties was monitored.

The names of the corrosion inhibitors used have been coded to prevent misinterpretation of the data presented. Individual manufacturers may request decoding for their products only. Government agencies may request a complete decoding.

II. TEST PARAMETERS

1. Additives

THE REPORT OF THE PRODUCT OF THE PRO

a. <u>Antioxidants</u>. Seven of the currently approved phenolic antioxidants listed in MIL-T-5624L, one of the earlier approved (and since removed) amine antioxidants, and a resorcinol antioxidant were selected. These are listed in Table 1. The letter codes used to identify the phenolic antioxidants are the same as the JP-4 specification, MIL-T-5624L.

The phenolic antioxidants were chosen based on formulation differences of the primary component; the others in the specification are, for the most part, mixtures containing the above as the major compound. Antioxidant f. is reported to give poor results in preventing peroxidation, and was included for that reason. Antioxidant a. is a very popular, well established product and was selected as the primary antioxidant for the test fuels. The resorcinol antioxidant was added to the test at the three month point at the request of the manufacturer on the strength of data they submitted.

b. <u>Corrosion Inhibitors</u>. Four widely used corrosion inhibitors (MIL-I-25017), identified as CI1 through CI4, were selected for evaluation. CI1 is one of the most widely used corrosion inhibitors and was selected as the "workhorse" corrosion inhibitor for most of the testing, including the antioxidant evaluation.

TABLE 1. ANTIOXIDANTS

- A01. N, N'-diisopropyl-p-phenylenediamine
- A02. (a) 2,6-di-tert-butyl-4-methylphenol
- AO3. (b) 6-tert-buty1-2,4-dimethy1phenol
- AO4. (c) 2,6-di-tert-butylphenol

THE CHARGE CHARGE CONTRACTOR CONTRACT CONTRACT CONTRACT CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

- A05. (f) 55% min 6-tert-butyl-2,4-dimethylphenol
 45% max mixture of tert-butylphenols and
 di-tert-butylphenols
- A06. (i) 60% min 2,4-di-tert-butylphenol
 40% max mixture of tert-butylphenols
- A07. (j) 30% min mixture of 2,3,6-trimethylphenol and 2,4,6-trimethylphenol 70% max mixture of dimethylphenols
- A08. (k) 65% min mixture of 2,4,5-trisopropylphenol and 2,4,6-triisopropylphenol 35% max mixture of other isopropylphenol and biphenyl
- A09. 4,6-di-tert-butylresorcinol

- c. <u>Conductivity Additives</u>. The two currently approved (MIL-T-5624L) conductivity additives, Shell ASA-3 and DuPont Stadis 450, were evaluated.
- d. <u>Fuel System Icing Inhibitor (FSII)</u>. The approved FSII, 2-methoxyethanol, MIL-I-27686, was evaluated. Since this program used JP-4 fuel, the higher flash point additive 2-ethoxyethanol (MIL-I-85470) was not included.
- e. <u>Metal Deactivator</u>. One of the two approved MIL-T-5624L formulations, N,N -disalicylidene-1,2-propanediamine, was chosen for evaluation. Based on chemical similarity, it was not felt necessary to evaluate both formulations.
- f. <u>JFA-5</u>. This additive is known to improve fuel thermal stability, although it does degrade the water separation characteristics of the fuel. This additive is currently required in JP-TS fuel (NIL-T-25524).

2. Additive Amounts.

GIRA COURTER SSSSSSS SSSSSSSS WEEDER BELLEVIA TOTALIS

- a. Antioxidants. For Test Series I (Figure 1) all antioxidants were used at the maximum allowable concentration of 8.4 LB/1000 BBL (24.0 mg/liter). For Test Series II (Figure 2), the antioxidant evaluation program, the two test concentrations were the minimum level, 6 LB/1000 BBL (17.1 mg/litre), and twice the maximum level, 16.8 LB/1000 (48.0 mg/liter).
- b. <u>Corrosion Inhibitors</u>. For Test Series I both the minimum effective and maximum allowable concentrations were evaluated for effect on fuel lubricity. For Test Series II, a level of 4 lb/1000 BBL was

							_			S	AMF	LE	Nl	JMB	ER	(F	os.	F)								
SHALE ADDITIVE PROGRAM	(d 100	AMB)	FROL)	(CONTROL)	(ROL)	TROL)																				(M)
TEST SERIES I	SA EA	GAL	(CONTROL	NOO)	NOO)	(CONTROL																				(PETROL EUM
	(55	(55	151	19/0	718	718	139	1140	141	1142	132	133	134	135	143	36	144	145	146	147	137	148	38	1130	1131	
	1170	0712	O.	0	0	0	-	_	-	-	-	-	-	-	-	-	1.	1	-	-	-	1.	-	-	1	1064
ADDITIVES																										
FSII	_		_			_	_	- (0.1	0	TO	0.	15	۷0	LU!	ME	%.					_				
ANTISTATIC	L		_			_	_	_			- 1	P	PM	Mi	x •	_						_				
A02	m X	M X			m ×	m X	m X	m X	m X	m X					E X				E X	m X		m X		Ε×		
A01											Х	m X	m x	m X		m X					m X		m X		m X	
CI1	m X	m X					m X				E X				Π X	m x	E n					m X	x m	m x	m X	
C12								m X				m X					Ц	E n			≘ ⊆					
C13	L	L							m . X				m ×						E r							
CI4	L									m ×				m X						23						
METAL DEACTIVATOR		L	_			_									m X	m X							3			
JFA-5		_														Ц						m X	m X			
		_														Ц					Ц					
	L	_																				_			_	
TESTS	L		_			_								Ц									_			\bot
	_	_																								
SPECIFICATION	X	Х	X		Х									Ш												\bot
JFTOT					_	_			_	_			_			_	_		_	_				_	_	
PARTICULATES		_			_	_	_			_		_									_		_			
EXISTENT GUM			_					_							_	_					_	_	_	_		
MINISONIC							_	_			_				_			_	_	_			<u> </u>	_		
LUBRICITY (BOC)		_					_	_									_		_	_	Ⅎ				_	_
PEROXIDES																									_	
ELEC CONDUCT																										
NAPHTHALENES		Х			Х												_}									
mx - Maximum allowable sion inhibitor (QPL-250	by 17)	MI,	L - T 2 L	-50 B/	524 100	L,	8 BBI	. 4 M	LB,	/10 , 4	000 L	BE B/1	3L 100	ani 0 (tio BBL	хi	dar FA	it,	8 (M)	LB [L-	/10 T-:	000 255) B 24	BL)	со	rro-
mn - Minimum allowable	by	ΜI	L - T	-50	524														•					•		
X - test performed for	th	nat	sa	mp'	16																					

SAND PRODUCTION OF THE PROPERTY OF THE PROPERTY OF THE SANDERS OF THE PROPERTY OF THE PROPERTY

FIGURE 1. TEST SERIES I SAMPLES

SHALE ADDITIVE		SAMPLE NUMBER (POSF)																									
PROGRAM TEST SERIES II	0722 (CONTROL)	_	0723	1149	0724	1150	0725	1151	0726	1152	0727	1153	0728	1154	0729	1155	0730	1156	1064 (PETROLEUM)	1710	1711					- - - -	
ADDITIVES								L					L									L					
FSII				- 0	.10) 1	0	0.1	5	VOL	:Ul-	IE S	% -	_								L		L	Ц		
ANTISTATIC	_		_	_		_	1	PPI	1 M	ix	_		_				_					L					
CII		_				-4	LB	/10	000	BI	3L -					_					_						
AC2			E n	2x mx							L																_
A03						2x mx		L	L				L													\Box	
A04							Ec	2x mx	ł																		
A05									m n	2x mx																	
A06											m n	2x mx														\Box	
A07													m n	2x mx	İ										Ц	\Box	
A08															m n	MX								L			
A01																	23	2x mx									
AU9						_			_	_		L	L	_		_		L	_	EC	2x mx	_		_		\dashv	
TESTS		_			-	-	_	\vdash	-		-	-		-	Н			_		\vdash	_					\dashv	
SPECIFICATION	Х					\vdash		-	-		\vdash	\vdash	┝	┢	\vdash			\vdash	\vdash	-			\vdash	\vdash		7	
JFTOT					<u>_</u>	<u>_</u>		<u></u>	<u>_</u>	<u></u>	<u></u>	<u>_</u>	<u>_</u>					<u> </u>	L,				-			\dashv	
PARTICULATES													_		_	_	_	_	_	<u> </u>			H	_	\dashv	\dashv	—
EXISTENT GUM	L	_		_											 -		_		_		,		H	H	H	\dashv	_
MINISONIC	E		_				_		_	_	_		_		_	_	_		_			Н		Н	\dashv	\dashv	
LUBRICITY (BOC)					Г			Γ	Γ		<u> </u>		Γ									Н	H		\dashv	\dashv	_
PEROXIDES	F			_	<u>_</u>	<u>_</u>	_	<u>_</u>	L		L	L	L	<u> </u>			_						H		H	\dashv	
ELEC. CONDUCT.	$ \cdot $				Γ	Γ			Γ				_						П		П	-	H		\dashv	\dashv	_
NAPHTHALENES	Х			-	\vdash	\vdash		\vdash	H	T			 		H	\dashv	Н	H				-	H	H		+	
mn - minimum allowable		Щ МІ	—- L-1		62	4L.	. 6	L	3/1	00	0 F	BRI	ar	nt.i	oxi	i da	nt.	لـــا			ب	لب		لـــا			

nimum allowable by MIL-T-5624L, 6 LB/1000 BBL antioxidant

Bedriet Besteben Rousesenkonnennessense

²x - two times the maximum allowable by MIL-T-5624L, 16.8 LB/1000 antioxidant X - test performed for that sample.

chosen, which is the standard amount of inhibitor which most refiners put into their fuel.

- c. <u>Conductivity Additive</u>. The two approved additives were used as a mixture at 0.5 ppm each. Field experience shows that this amount usually gives JP-4 the required conductivity.
- d. <u>Fuel System Icing Inhibitor (FSII)</u>. FSII was added to all samples at 0.10 to 0.15 volume %, the approved level for JP-4. Within this range, the actual amount was not considered critical for test purposes.
- e. <u>Metal Deactivator</u>. For the test sequence looking at metal deactivator, the maximum allowable amount of 2 LB/1000 BBL (11.6 mg/liter) was used.

3. Test Conditions/Sampling Intervals

Seed Assessives regarded samples specific to the second se

Two 55-gallon drums (0711 and 0712) contained fuel with identical additive packages, the former in cold storage (40°F), the latter outside under roof. Except for these two drums, all containers were 5-gallon epoxy lined cans initially filled with 4½ gallons of fuel. The containers were sealed except when removing sample test quantities. Because JP-4 fuel is stored in floating roof or floating pan tanks when in dormant storage, it was not felt necessary to ensure a good supply of air to fuel during storage. Other than sample 0711 and 0712, Series I storage was inside at a controlled/monitored temperature between 70°F-80°F. The Series II test containers were stored at 110°F. The 15-month plan for Series II samples in oven storage was designed to simulate five years of actual storage, using 13 weeks as equivalent to

one year. Fuel samples were evaluated at zero, three, nine and 15 months, with the exception of several samples which were also evaluated at six months for lubricity characterization. The 15-month test was twice interrupted for the Series II 110°F storage samples when oven operation was interrupted. One episode was in December 1984 for seven days and the other was in January 1985 for eight days. The lowest temperature reached on the former incident was 70°F and on the latter 50°F.

4. Fuel Property Tests

THE PROPERTY OF THE PROPERTY O

Full specification property tests were performed on drum samples (0711 and 0712) for all test intervals and on control fuels for the first test period; in addition, specialized tests such as lubricity, peroxide content, and actual thermal stability breakpoint temperature were performed. The following tests were done on the fuel samples taken at the specified time intervals: thermal stability (JFTOT), particulates, filtration time, existent gum, water separation, lubricity, peroxides, electrical conductivity and naphthalenes. These will be further described in Section IV.

III. TEST IMPLEMENTATION

1. Origin of Test Fuel

CONTROL CONTRO

The shale JP-4 test fuel for this test program was obtained from Caribou Four Corners Refinery of Woods Cross, Utah, while the refinery was under subcontract to Geokinetics, Inc. of Salt Lake City, Utah (DoD Contract DLA 600-83-C-5000). The shale crude refined was produced in-situ by Occidental Research Corporation at their Logan Wash Co. facility and by Geokinetics Inc. at Camp Kerogen, UT.

The crude was processed using catalyst and processes licensed from the Union Oil Company. The four refining steps were: distillation, hydrotreating, hydrocracking and product fractionation (Reference 1). Batch II production began July 29, 1983. Non-additive fuel entered the naphtha rundown tank September 26, 1983 (identified as: Tank 528, Batch II, Blend A). All lines had been cleared of additives and the tank cleaned. No clay filtering of the fuel was performed.

The fuel was tested at the Caribou laboratory to determine acceptance as JP-4 with the exception of additive requirements, as specified by MIL-T-5624L. The results are shown in Table 2. Since the fuel did meet specification requirements, concentrated stock solutions of all of the additives were made from a gallon sample of the non-additive fuel.

On September 29, 28 55-gallon drums were filled with 50 gallons each of fuel. The fuel was filtered through a 25 micron fuel filter as it exited the tank. The drums were 16 gauge steel with D.O.T. 17C rating and a double coating of chemically inert IC707 (Rheams epoxy

TABLE 2. RAW SHALE/PETROLEUM FUEL PROPERTIES

CONTRACT ANTHER CORRESPOND CORPORED BORGETTER PROPERTY

PROPERTY	LIMITS	SHALE JP-4	PETROLEUM JP-4**
Color, Saybolt Total Acid Number, mg KOH/gm Aromatics, vol percent	1/ 0.015,max 25.0,max	11.3	+28 (0.0008) (11.9)
Olefins, vol percent Sulfur, Mercaptan, wt percent Sulfur, total, wt percent	5.0,max 0.001, max 0.40,max	0.5	(0.5) 0.0000 0.000
Distillation Temperature, °C (D 2887 limits given in parentheses) Initial boiling point 10 percent recovered 20 percent recovered 50 percent recovered 90 percent recovered End point Residue, vol percent	1/ I/ I45 (130) 190 (185) 245 (250) 270 (320) 1.5,max 1.5,max	52 83 102 149 200 233 0.5	52 95 111 142 179 256 0.5
Gravity, deg API or Density, kg/1 at 15°C Vapor Pressure, psi KPa	45.0,min;57.0,max 0.751,min;0.802;max 2.0,min;3.0,max 14,min;21,max	53.3	54.2
Freezing point, °C, (°F) Viscosity, at -20°C, centistokes Net heat of combustion, MJ/kg (Btu/1b)	-58 (-72),max 42.8 (18,400),min	(-94) 18,736	(B-72) (1.8) 43.5
Hydrogen content, wt percent or Smoke point, mm	13.6,min 20.0,min	14.5	14.3 26
Copper strip corrosion, 2 hr at 100°C (212°F) Thermal stability change in pressure drop, mm Hg	1b,max 25,max	1A 0	1A (0) (1)
TDR rating	Ž	4	(5)

TABLE 2. RAW SHALE/PETROLEUM FUEL PROPERTIES (CON'T)

いっついりというながらながられ

CONTRACT SECTIONS SECTIONS

CHARLES OF THE PROPERTY OF THE

Section 1

PROPERTY	LIMITS	SHALE JP-4*	PETROLEUM JP-4*
Existent aum ma/100 ml	7.0,max		1.0
Filtration time, min	15,max	ທູ່	ຕູ້
Particulate matter, mg/liter	1.0,max	1.0	c. O
Water reaction	1.	-	1
Interface rating	10	٦ ٥	2 0
Water separation index, modified	/7	98	500
Fuel system icing inhibitor, vol percent	0.10,mln;U.15,max		* • • • • • • • • • • • • • • • • • • •
Fuel electrical conductivity, p/Sm	200,m1n;600max		
Commonian Inhibitor 1h Mbb1 (OCT_48)			3.1
COLLOSION INNIBIACIO, IONINATI (IONINI)			

* Caribou Refinery Data - some tests not available

Hill AFB Data

() SFTLA, Wright-Patterson AFB

 $^{1/}$ To be reported - not limited

The minimum water separation index, modified, rating for JP-4 shall be 85 with all additives except corrosion inhibitor and electrical conductivity additives present, or 70 with all additives except for the electrical conductivity additives. 12

coating #973). All drums were checked to insure dryness, but none were pre-rinsed with shale fuel.

Fuel was added to drums through the bunghole while a measured volume of additive solution was added through the vent hole. Table 3 lists the drum identification numbers and concentration of additives they contained. These drums were shipped to Wright-Patterson AFB on September 30.

The 28 drums arrived at Wright-Patterson October 5, 1983. They were tumbled on a drum shaker for 15 minutes each to insure that all additives were thoroughly mixed with the fuel. Fuel conductivity was then measured and recorded, as was the fuel temperature. A concentrated solution of ASA-3 and Stadis 450 in toluene was added to all fuels which registered lower than 200 pS/m (picosiemens per meter or Conductivity Units, CU). These were 0713, 0727 and 0728. The aliquot of solution added to a drum increased the concentration of anti-static additive by 0.5 ppm. After the addition, the drum was tumbled for 15 minutes and a new reading taken.

During this same time period, a petroleum JP-4 (drum 1064) was obtained from Hill AFB, Utah, for use in the test as a reference fuel. It also was shipped in an epoxy lined drum. Specification test results are shown in Table 2.

2. Sample Preparation

THE PROPERTY OF THE PROPERTY O

A list of the sample numbers and their additive packages are listed in Figures 1 and 2. The test samples which could be made from the original drummed fuel, that is those which contained the same

AF FORM 3134

		8920		•		4			1	33	[- {
		Z9Z0				4							33						-		
		9920				4						33									- {
	-	9940				4		- 1	33												1
		†9 40				4					33									Í	
		£9Z0				4		33												als.	- 1
		0762				4	33	•												arre	
		1920			-															q pu	
		0570	9%			4				9										All units for DCI-4A and antioxidants are pounds per thousand barrels.	
LN		0729	1			4							9							Ę	1
CONTENT		0728	OLU			4						9		-						per	١
	(S#	7270	0.15 VOLUME			4			9											spu	
ITIV		9270	0	FACH		4								9			ļ			nod .	_
ADDITIVE	SAMPLE	0725	0.10 to	F	i -	4					9			_						are	SHALE AUDITIVE PROGRAM
SAMPLE	USF	0724	;	0.5 PPM.		4		9												nts	꽃
SAM	SAMPLES (PUSF	0723	1	0.5		4	9									-	-			rida	K
DRUM	PLES -	0722				4	-													tio,	100
	SA	0721					8.4													d an	ا ب ـ
Э.	FE-	0720																		and	SHA
TABLE	DRUMMED	6170			,		8.48.4													1-4A	
Ì		8170					8.4				•									20	
	ORIGINAL	7170			-		- 80			8.4										for	
	—წ-	91/0	- -							8.4									ļ	its	
		9170																		5	Ì
		₽ [Z0																		A1	
		£170																		-	
		0712				*8	3.4											-			[
		1120				8	8.48.4						-							<u> </u>	
									-			-				-					
		ADDITIVES	FSII	SHELL ASA-3	STADIS 450	CII	A02	A03	A06	A01	A04	A07	A08	A05							
			لسيبا		ليبييا			i		L				L	Ĺ	L	L	L	i	i	

books recognic salesses assesses revisions replaced

combination and concentration of additives, were drawn (Appendix A). The fuel remaining in the drums was mixed with additive solutions in order to make the rest of the test samples. One exception to this was the 4-6 di-tertiary-butylresorcinal samples, 1710 and 1711, which was formulated using 0722 drummed fuel at the three-month point. The solutions were concentrated quantities of additives in toluene. They were made up the week the drums arrived. Drums were tumbled for one half hour, then sampled.

All fuel test samples (except 0711 and 0712 which were 55-gallon drums) were stored in two five-gallon epoxy lined cans. Each can was rinsed with the fuel to be stored in that can and then filled to approximately four and one half gallons.

3. Test Fuel Sampling

BOSA, PRECISES CONTROL APPLICATE COLLEGE SULCIONAL SULCIONAL SECURION ESSENDION DESENDOR DESENDOR DESENDANT POR

Sampling for each test period followed this procedure:

- 1. Shake can
- 2. Rinse two one-gallon cans with test fuel
- Fill two one-gallon cans plus one 250ml glass bottle with test fuel

One one-gallon can was given to SA-ALC/SFTLA, the Energy Management Laboratory, Wright-Patterson AFB, for the particulate/filtration time test. SFTLA also received the 250ml bottle for the remainder of their tests: water separation and existent gum. The Aero Propulsion Laboratory's (APL) Fuels Branch received the other one gallon can for their tests: lubricity, thermal stability, peroxides and electrical

conductivity. For room storage test samples (Series I), some APL tests were done directly from the five gallon can storage containers.

To differentiate between the first and second five gallon can of each sample, the cans were labeled "A" and "B" (or "C" and "D" for duplicate samples). All zero-, three-, and six-month tests were done on samples drawn from the "A" and "C" cans. All nine and fifteen month samples were done on samples drawn from "B" and "D" cans, except the following:

0722	0725	1139
0730	0727	0761
0718	0761	0718

SEE ARRESTED BUILDER UNIVERS BUILDERS FORWARD BUILDING BU

For these samples, in the fifteen-month tests, "B" and "D" cans were used in SFTLA tests while "A" and "C" were used for APL tests. One exception to this was 0718B, which was also used for the particulate/ filtration time test.

IV. TEST RESULTS AND ANALYSIS

1. Thermal Stability (JFTOT).

THE CONTRACT OF SECOND SECONDS AND SECONDS SEC

Thermal stability of the test fuels was measured using the Jet Fuel Thermal Oxidation Tester (JFTOT) in accordance with the ASTM D3241 procedure. All samples were tested at the breakpoint temperature of the original fuel, i.e., the breakpoint of 0761 (310°C) for Series I fuels and of 0722 (320°C) for Series II fuels. If a sample passed at the original temperature, the test was complete. If the first test was a failure, the test was rerun at 20°C below the breakpoint temperature. If the second test was a failure, the test was rerun at 40°C below the original breakpoint temperature. A pass at 260°C, a visual rating of less than three and a pressure drop of less than 25 mm Hg, is the JP-4 specification requirement. The tube deposit ratings (TDR) for all tests are reported for a further indication of fuel thermal stability. Though the JP-4 specification does not have a TDR limit, both JP-7 and JP-TS specifications require that the tube rating not exceed 12.

Series I test samples were stored for 15 months at room temperature while Series II samples were in oven storage at 110°F for 15 months, simulating five years of storage at room temperature. Thus, a good JFTOT performance in Series I was not as severe a test of a sample as compared to Series II, and samples not performing well in Series I were considered to have very poor thermal stability.

The Series I fuels that failed at the original test temperature are listed in Table 4. Fuels listed here contained the maximum allowable amount of both antioxidant and corrosion inhibitor. All of the Series I

TABLE 4. SERIES I - JFTOT FAILS AT ORIGINAL TEST TEMPERATURE

OTHER LB/1000 BBL						4 JFA-5		
CORROSION INHIBITOR LB/1000 BBL	8 CI1	8 CII	8 CII	8 CI2	8 CI3	8 CII	8 CI3	
ANTIOXIDANT LB/1000 BBL	8.4 A02	8.4 A0I	8.4 A0I	8.4 A01	8.4 A01	8.4 A01	8.4 A02	
ANTI-STATIC	ON	ON	YES	YES	YES	YES	YES	
FSII	YES							
STORAGE	ROOM							
FUEL CODE	1130 A/B	1131 A/B	1132 A/B	1133 A/B	1134 A/B	1138 A/B	1141 A/B	

JFTOT RATINGS

MONTHS

			c			۳.			6			15	
FUEL CODE	TEMP °C	VIS ATOR	A TOR	∆ p mmHg	VIS	VIS ATDR CODE II	∆ P mmHg	VIS ATDR CODE	∆ TDR	A P mmHg	VIS CODE	∆ TDR	∆ P mmHg
1130 A/B	310 290	2 !	ا ب	0.5	4 ~	13 3.4	0.3	⊣ ¦	5.5	0.1	ო പ	11.5	0.1
1131 A/B	310	+2	12	0	+ + -	20.5	ر ا	- :	-	0	2	ω ;	0 :
1132 A/B	310	2:	8.5	0	2 4	10.2	000	2	15		1 4+	6 4	00
1133 A/B	310	1 4	7.5	00	1	23.5	00	- 1	2:	p:	2	4	0 :
1134 A/B	310		2.5	0	m -	w 4	0.1	2 :	ا م	* 1	- :	1.5	0:
1138 A/E	310	-	4 :	0.3	m	1.5	0.2	 	1.5	* *	- :	2	0:
1141 A/B	310 290	2	2.5	0		13	0.2	- :	11.5	* [11 3	14	0.2

* Pressure Transducer Non-Operative

fuels with the combination of maximum allowable A01 and maximum allowable corrosion inhibitor appear in the table with exception of a sample containing CI4 (1135) and a sample containing metal deactivator (1146). CI4 seems to aid thermal stability, as does metal deactivator, when combined with the maximum concentration of A01. One Series I sample (1137) containing maximum A01 and a minimum amount of corrosion inhibitor, CI2, did very well.

In Series I the CI3 corrosion inhibitor at maximum concentration degraded thermal stability. Its combination with either maximum AO1 (1134) or maximum AO2 (1141) caused samples to fail at the original test temperature. All Series I samples containing the minimum allowable concentration of corrosion inhibitor showed good thermal stability.

CONTROL OF THE PROPERTY OF THE

An unlikely sample for poor thermal stability was 1130 (Table 4), which contained the maximum concentration of AO2. Its poor performance is attributed to fuel degradation during shipment from Caribou Refinery, since at that time the fuel from which this sample was made contained no additives. Comparatively, samples containing a similar additive package (0711, 0712, and 1139) showed no thermal stability problem.

The JFA-5 sample (1138), failed at one time period. Overall, JFA-5 was effective in improving thermal stability, as evidenced when sample 1138 is compared to sample 1131, which contained the same additive package with the exception of JFA-5. The JFA-5 sample had lower visual codes, tube deposit ratings, and pressure drop. A sample similar to 1138, containing JFA-5 and AO2 rather than the AO1 antioxidant (1148), did not fail at the original test temperature.

Metal Deactivator (MDA) improved the thermal stability of the shale fuels. Comparing a sample containing FSII, anti-static additive, maximum CII and AO2 (1139) to a like sample with MDA (1143), the MDA sample had all ones for visual code with low TDR and ΔP , while sample 1139 had visual ratings of 1 and 2, with TDRs of 14 and 10, respectively. Likewise for the AO1 samples, the MDA sample (1136) had a visual code of 1 with low TDR and ΔP , while the same sample without MDA (1132) failed the visual rating at 3 and 15 months and registered a 15 TDR at nine months.

CALL DESCRIPTION BY THE
In test Series II, antioxidants were evaluated. The worst performing fuels were those that failed in the 15th month (Table 5). Some samples failed earlier in the test program, but not at the 15th month, so that results for those samples showed test inconsistencies rather than fuel degradation. Samples containing no antioxidant (0722) did not do well, though they were still passing thermal stability at 280°C, which is higher than the JP-4 specification. Two fuels containing antioxidant A03 and A08 (1150 and 1155) at the 16.8 LB/1000 BBL concentration, failed at fifteen months, while their 6 LB/1000 BBL counterparts (0724 and 0729, respectively) passed at the original test temperature. This suggests that a high concentration of some antioxidants may in fact be detrimental to fuel thermal stability. Samples containing AO1 in both the maximum and minimum allowable concentration (0730 and 1156) did not do well, failing at the original test temperature for all test periods. However, these samples did better than samples containing no antioxidant, by passing at 300°C.

TABLE 5. SERIES II - JFTOT FAILS AT 15 MONTHS

and here a personal and the second and the second

OTHER LB/1000 BBL			-			
CORROSION INHIBITOR LB/1000 BBL	4 CI1	4 CI1	4 CII	4 CII	4 C11	4 C11
ANTIOXIDANT LB/1000 BBL	ON	NO	6 A01	16.8 AC3	16.8 A08	16.8 A01
ANTI-STATIC	YES	YES	YES	YES	YES	YES
FSII	YES	YES	YES	YES	YES	YES
STORAGE	OVEN	OVEN	OVEN	OVEN	OVEN	OVEN
FUEL CODE	0722 A/B	0722 C/D	0730 A/B	1150 A/B	1155 A/B	1156 A/B

JFTOT RATINGS

SHLNOW

			0			8			6			15	
FUEL CODE	J. C	VIS	ATDR	∆ P mmHg	VIS CODE	∆TDR	∆ P rmHg	VIS CODE	∆TDR	∆ p mmHg	VTS	∆ TDR	d 7 mm
0722 A/B	320		8.5	0	2	19.5	0	2	4.5	0	4+	19	0.9
	300 780 780	1 1	! ! ! !	! 	: :	1 1	1 ;	1 1	: :	: :	÷	19 3.5	n. 00
0722 C/D	320	2	10	3	2	10.5	0		4	0	4+	53	0
	300	!	i i	;	;	l l	;	:	:	!	4	15	0
	280	!	1	:	!	;	;	!	!	! !	1	7	0
0730 A/B	320	4	15.8	0.1	+ †	31	0	m	12	0	4	39.5	0
	300	-	1.5	0.3	1	2	0	-	2	0	1	2	0.5
1150 A/B	320	2	3.9	Ī	4+	31	0.1		2	0	2	17	0
	300	!	1 1	1	-	က	0.2	•	!	!		2.5	0.5
1155 A/B	320	2	7.5	0.1	2	6.5	0		0.2	0.4	4	21	0
	300	-	-		!	•	!	l I	1	-	7	1.8	0
1156 A/B	320	4+	50	0.3	m	10.5	0	4	19	0.1	4	. 11	0.1
	300	1	2	0	-	0.5	0.1	1	2	0		ე. 2	0.5

The Series II fuels which performed best were those that passed at all test periods (Table 6). From these results, the minimum 6 LB/1000 BBL of A02, A04, A08, or A09 is adequate to protect fuel thermal stability. The fuels containing 16.8 LB/1000 of these additives did well also, passing at the fifteen month test, except A08 (1155).

2. Particulates/Filtration Time

encentrated interestation probably

The ASTM D2276 method, "Particulate Contamination in Aviation Turbine Fuels," was used to determine particulates, using a one gallon sample as prescribed by the JP-4 specification and following the method outlined there for determining filtration time. With two exceptions, all sample results were well within the JP-4 specification limits of 1 mg/liter particulates and 15 minutes filtration time for all test periods.

The two exceptions were 0722 and 1149. The 0722 B and D samples had particulates of 0.5 and 1.0 mg per liter, respectively. These two samples contained no antioxidant, and thus some particulate formation was expected. These fuels still met the JP-4 specification requirements. The 1149 sample had a 17.2 mg per liter particulate level at the zero month test. This result was caused by a piece of rubber-like substance found in the sample and was surmised to have come from the can lining.

Existent Gum

Existent gum content was determined by ASTM D381, "Existent Gum in Fuels by Jet Evaporation," as required by the JP-4 specification. All

TABLE 6. SERIES II - NO JFTOT FAILS AT ORIGINAL TEMPERATURE

PRODUCE STATES REPORTED BY THE PRODUCE STATES OF THE PRODUCE BY THE PRODUCE BY THE PRODUCE OF TH

ОТНЕR LB/1000 ВВL						
CORROSION INHIBITOR LB/1000 BBL	4 CI1	4 CI1	4 CI1	4 CII	4 CI1	4 CII
ANTIOXIDANT LB/1000 BBL	6 A02	6 A04	6 A08	16.8 A06	6 A09	16.8 A09
ANTI-STATIC	YES	YES	YES	YES	YES	YES
FSII	YES	YES	YES	YES	YES	YES
STORAGE	OVEN	OVEN	OVEN	OVEN	OVEN	OVEN
FUEL CODE	0723 A/B	0725 A/B	0729 A/B	1153 A/B	1710 A/B	1711

JFTOT RATINGS

MONTHS

			0			က			6			15	
FUEL CODE	TEMP °C	VTS CODE	VIS ATDR CODE	∆ P mmHg	VIS ATDR CODE	∆TDR	∆ P mmHg	VIS ATDR CODE	∆TDR	^P mmHg	VIS ATDR CODE	∆ TDR	^P mmHg
0723 A/B	320	2	<u> </u>	0.3	2	50	0.1	1	ന	*	П	4.5	0
0725 A/B	320	2+	20	2	1	12	0	2	II	0	1	2	0
0729 A/B	320	L	3.5	0.2	2	18	0	-1		0.2	2	6.3	0.2
1153A/B	320	2	10.5	0.5	2	50	6.0	Ī		0	2	4	0.3
1710 A/B	320	-	:			3	0.4	, 1	1	0	1	1	0
1711 A/B	320	1	9 1		-1	7.5	I	.	3	0	2	10	0

^{*} Pressure Transducer Non-Operative

samples were well under the JP-4 specification limit maximum of 7 mg/100 ml for all time periods.

The highest gum content was in a sample containing no antioxidant (0722 C and D), which registered 3.4 mg gum per 100 ml of fuel. A duplicate sample (0722 A and B) contained no gum at the fifteen month test. One other sample, containing a maximum allowable amount of A01 and a maximum allowable amount of CI3 (1134), had 3.2 mg/100 ml gum. This sample was at room temperature and should not have experienced any gum formation. The result is considered insignificant considering the results described above for duplicate samples of 0722. 1134 A and B had good results until the 15th month. A sample similar to 1134, 1141, containing maximum CI3 with antioxidant A02 rather than A01, had no gum at 15 months.

4. Peroxides

reserved breefers between the

Peroxide content of the test samples was determined by ASTM D3703, "Peroxide Number of Aviation Turbine Fuels." The MIL-T-5624L specification does not state a peroxide limit for JP-4, but sets 1 meq/1000g (8 ppm) as the maximum allowable for JP-5. This is the standard for comparison of these test results. The fuels tested for peroxides were all of those in Series II (oven storage) and selected samples from Series I. The Series II fuel samples contained a variety of antioxidants at the minimum and two times the maximum allowable concentration.

Over all time periods, the shale fuel performed very well, with 19 of 28 samples having less than one part per million peroxide by the

fifteenth month. At fifteen months, only two fuels (0722 A/B, C/D) were above the 8 ppm limit; they contained no antioxidant.

The 0722 fuels A/B and C/D were duplicates. A similar sample, containing no antioxidant, was 0761 A/B and C/D. Sample 0722 A/B and C/D (oven storage) showed 1000 ppm peroxides. Sample 0761 (room temperature) showed zero ppm peroxide by the end of the test. This indicates that the shale fuel with no antioxidant can be stable (no peroxides) at room temperature for at least 15 months (as indicated by 0761) and up to three years* (as indicated by 2 ppm peroxide for 0722 C/D at nine months).

THE PROPERTY OF THE PARTY OF TH

educate paracolation paracolation

Since all of the antioxidants kept the peroxide level to less than eight ppm, the best antioxidant was determined as the one which kept the peroxide level at zero through the fifteenth month with the lowest concentration of additive. Three additives fell into this category: A02, A05 and A01. Barely distinguishable from these are those antioxidants which controlled peroxides to less than one ppm at the minimum concentration: A03 (0724), A04 (0725), and A06 (0727). Though these results may seem insignificant, they occurred at the 9 and 15-month test period, and are seen as an indication of an upward trend in the amount of peroxides. Of samples containing two times the maximum amount of these antioxidants 1150, 1151, and 1153, respectively, 1150 contained no peroxides at 15 months, while 1151 and 1153 contained some peroxides, still less than one part per million.

Three of the nine antioxidants tested, AO7 (0728, 1154), AO8 (0729, 1155), AO9 (1710, 1711), as listed Table 7, did not keep peroxides to

^{*} Using 1 wk oven = 4 wks ambient equivalent

below 1 ppm. As seen in this table, even two times the maximum concentration of these three antioxidants did not prevent peroxides from forming. Comparing their structure with the other antioxidants (Table 7A), the phenolic antioxidants with tertiary butyl side chains prevented peroxide formation better than those with isopropyl chains, such as A07 and A08. Also, the resorcinol antioxidant, A)9, did not perform as well as the tertiary butyl phenolic antioxidants.

It should be noted here that the AO9, added to the program at three months, may have performed better if it had been added to fuel at the zero month. However, the O722 fuel drum from which these samples were made had been in cold storage. In addition, the O722 test samples, which were at 110°F, showed less than one part per million peroxide at three months.

For most fuels containing peroxides, the amount progressively increased to the fifteenth month, so that fuels with zero ppm peroxides contained the best antioxidants. For all antioxidants at all test periods, a minimum concentration of antioxidant did as well as two times the maximum concentration.

5. Water Separation

CONTRACTOR TO SERVICE
Water Separation was measured using the ASTM D3602 procedure for a Minisonic Separameter, "Water Separation Characteristics of Aviation Turbine Fuels." All test fuels underwent a Minisonic test at each of the four test times. The JP-4 specification requires a minimum Water Separation Index Modified (ASTM D2550) of 85 with all additives except

TABLE 7. FUELS WITH PEROXIDES ONE THROUGH EIGHT (ppm) AT 15 MONTHS

Control of the second of the control
	15	1.442	5.560	1.553	1.586	6.592	1.783
PEROXIDES (ppm) MONTHS	6	0.160	0	0.640	0.480	3.400	0.880
PEROXII MOI	3	0	0.087	0	0	O	0
	0	0	0	•	0	O	-
CORROSTON INHIBITOR	LB/1000 BBL	4 CI1	4 CI1	4 CI1	4 CI1	4 CI1	4 CII
ANTIOXIDANT	LB/1000 BBL	6 A07	6 A08	6 A09	16.8 A07	16.8 AO8	16.8 A09
ANTICTATIC		YES	YES	YES	YES	YES	YES
SNICI	INHIBITOR	YES	YES	YES	YES	YES	YES
	STORAGE	OVEN	OVEN	OVEN	OVEN	OVEN	OVEN
<u>.</u>	CODE	0728	0729	1710	1154	1155	1711

TABLE 7A. RELATIONSHIP OF ANTIOXIDANT STRUCTURES TO PEROXIDES

ANTIOXIDANTS	STRUCTURE OH	PEROXIDES 15 MONTHS	
A02 2,6-di-tert-butyl-4-methylphenol	H ₃ C-CH ₃ CH ₃ CH ₃ CH ₃	0723-mn 1149-2xmx	0

A03 6-tert-buty1-2,4-dimethylphenol	OH OH	0724-mn	0.415
6-tert-buty 1-2,4-a fillethy i phienoi	$H_3C - CH_3$ CH_3 CH_3	1150-2xmx	0

acia recessor address arrange arrange descessor services especial presentations arranged services arranged because

A04 2,6 di-tert-butylphenol
$$H_3C \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3}$$
 0.520 0.525

A05
6-tert-butyl-2,4-dimethylphenol tert-butylphenols
di-tert-butylphenols
$$H_{3}C-C \xrightarrow{CH_{3}} CH_{3}$$

$$CH_{3} \xrightarrow{CH_{3}} CH_{3}$$

TABLE 7A. RELATIONSHIP OF ANTIOXIDANT STRUCTURES TO PEROXIDES (CON'T)

ANTIOXIDANTS	STRUCTURE	PEROXIDES 15 MONTHS	
A06	OH CH3	0727-mn	0.526
2,4-di-tert-butylphenols tert-butylphenols	H ₃ C-C-CH ₃ CH ₃ CH ₃	1153-2xmx	0.701
	ОН СН ₃ СН ₃		
AO7 2,3,6-trimethylphenol	ОН ОН	0728-mn	1.400
2,4,6-trimethylphenol dimethylphenols	H ₃ C CH ₃ H ₃ C CH ₃	1154-2xmx	1.708
	н ₃ с Сн ₃		
A08	он сн ₃	0729-mn	4.990
<pre>2,4,5 triisopropylphenol 2,4,6 triisopropylphenol</pre>	сн ₃ - Сн ₃ сн	1155-2xmx	6.151
	СН ₃ ОН СН ₃ НС СН ₃ СН ₃ Н ₃ С-Е-СН ₃		
A01	- n J	0730-mn	0
N-N'-diisopropyl-p-phenyl- enediamine	CH3 HC-N-O-N-CH CH3	1156-2xmx	0.841
A09		1710-mn	1.646
4,6-di-tert-butyl resorcinol		1711-2×mx	2.306
	H ₃ C-C-CH ₃ OH H ₃ C-C-CH ₃		

A TELL TOURS OF THE PROPERTY O

corrosion inhibitor and electrical conductivity additives present, or 70 with all additives except for the conductivity additives. Though the specification calls for a different test than was used in this program, the 70 index was used to relatively evaluate the fuels. With the exception of two fuels (1130 and 1131), all fuels contained an anti-static additive, and, with the exception of one (0761), contained corrosion inhibitor, so that results were expected to fluctuate (Reference 3).

いいことのなる。というというとうと

Ten fuels had at least one failure (less than 70 rating), of which seven had more than one failure. The seven fuels which did not perform well are listed in Table 8. All of these contained the maximum allowable amount of corrosion inhibitor and the maximum allowable amount of antioxidant, with the exception of 1711.

For the first four fuels, corrosion inhibitor at the maximum concentration (8 LB/1000 BBL) was the cause of the low water separation as measured by the minisonic test, since none of the Series II samples (except 1711, which contained 4 LB/1000 BBL corrosion inhibitor with two times the maximum amount of antioxidant) failed the test. These failures are attributed to poor test precision, since these fuels did have high ratings at some time periods. All test fuels containing the maximum amount of corrosion inhibitor failed the test at least once except one which contained the maximum CI2 with the maximum amount of antioxidant A01 (1140).

In general, a maximum concentration of antioxidant did not affect water separation as measured by the Minisonic. An exception was AO9 (1711), which adversely affected water separation when present at two times the maximum allowable concentration.

TABLE 8. FUELS FAILING WATER SEPARATION TEST

DEX	15	99	67	67	19	26	61	57
I NO.	6	70	56 44	61 58	91 57	41	40	57
WATER SEPARATION INDEX MONTHS	3	85	56	61	91	57	55	65
WATER		99	63	7.1	85	39	49	:
ОТНЕР	LB/1000 BBL				2 MDA	4 JFA-5	4 JFA-5	
CORROSION	LB/1000 BBL	8 C11	8 CI3	8 C14	8 CI1	8 C11	8 CI1	4 CI1
THACTVOTTUR	LB/1000 BBL	8.4 A02	8.4 A01	8.4 A01	8.4 A02	8.4 A01	8.4 A02	16.8 A09
	FUEL CODE STORAGE FSII ANTI-STATIC	YES	YES	YES	YES	YES	YES	YES
	FSII	YES	YES	YES	YES	YES	YES	YES
	STORAGE	AMBIENT	ROOM	ROOM	ROOM	ROOM	ROOM	OVEN
	FUEL CODE	0712	1134 A/B	1135 A/B	1143 A/B	1138 A/B	1148 A/B	1711 A/B OVEN

Further, JFA-5 affected water separation adversely. The two test samples which contained JFA-5, (1138 and 1148) had the lowest ratings for all of the fuels tested and failed at all time periods.

For most samples, water separation index randomly changed from time period to time period, neither consistently increasing nor decreasing with time.

6. Lubricity

The fuels submitted for the Ball-On-Cylinder Lubricity Evaluator (B.O.C.L.E.) were Series I fuels containing maximum allowable and minimum effective concentrations of corrosion inhibitor. Additionally, the control fuels for Series I and II and the petroleum JP-4 (sample 1064) were tested. Each fuel sample was evaluated at five intervals: 0, 3, 6, 9, and 15 months. Originally the 6-month interval was not included, but was added subsequent to the excessive wear exhibited in the main fuel pump during endurance testing of the F100 engine with shale derived JP-4 (Reference 4). Presently, there is no specification requirement for fuel lubricity.

The Ball-On-Cylinder Lubricity Evaluator test consists of a loaded, stationary ball contacting a rotating cylinder. The ball is placed perpendicular to the shaft supporting the cylinder. The cylinder rotates in a rectangular reservoir of fuel establishing a boundary layer of fuel on the cylinder. It is this boundary film which provides lubrication between the ball and the cylinder. As a guide for fuel lubricating quality and based upon past experience with hardware test-

ing, the following guidelines have been followed:

WSD, mm	Fuel Lubricating Quality
0.00 to 0.35	Good
0.36 to 0.45	Marginal
> 0.45	Poor

The fuels which display the best lubricity were those that, in a consistent manner, provided WSDs of 0.00 to 0.35mm. Four corrosion inhibitors/lubricity improvers, identified as CII through CI4, were evaluated. Two fuels containing CII in the maximum allowable concentrations exhibited good lubricity. Two similar fuels with maximum CII levels (0711 and 0712) were marginal at only the zero month.

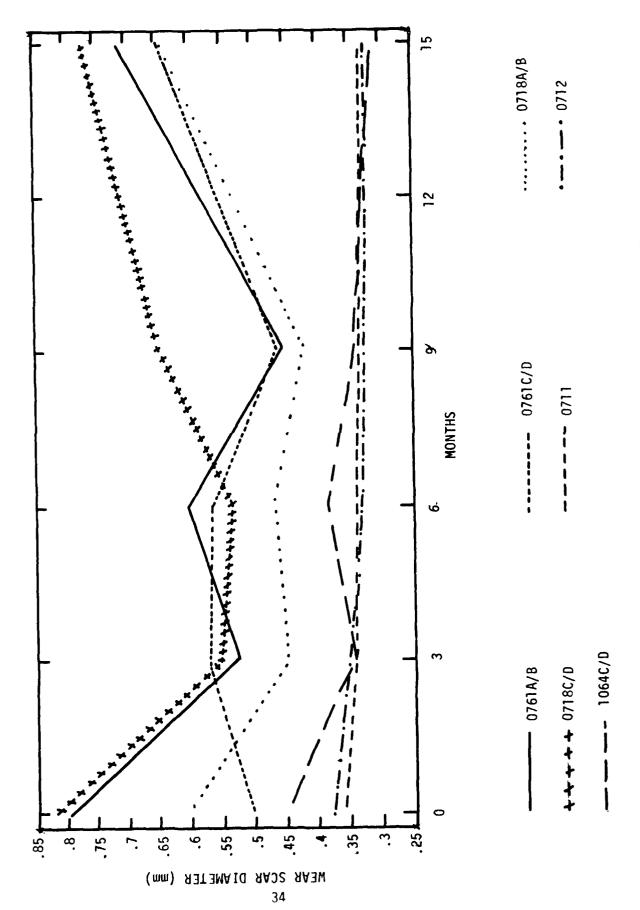
There were fuels which displayed poor lubricity, i.e., greater than .45mm WSD for all time intervals; none of these fuels contained corrosion inhibitor.

Those fuels which had average WSDs consistently in the 0.36 to 0.45mm range (at any point during the testing) were considered of marginal lubricity. The lubricating quality of these fuels is likely to be unsatisfactory for use of in lubricity-sensitive systems such as the TF-30 or F100 engines.

Results for Series I control fuels, containing no corrosion inhibitor, varied widely (Fig. 3) showing B.O.C.L.E. ability to indicate poor lubricity, but not with the accuracy experienced when corrosion inhibitors are present.

For fuels with minimum corrosion inhibitors (Fig. 4), CI2 and CI1 performed consistently better than CI4 and CI3. Neglecting some early test program inconsistencies, the maximum allowable concentrations of

all the additives in Shale JP-4 displayed good lubricating characteristics by the 15-month test interval (Fig. 5).

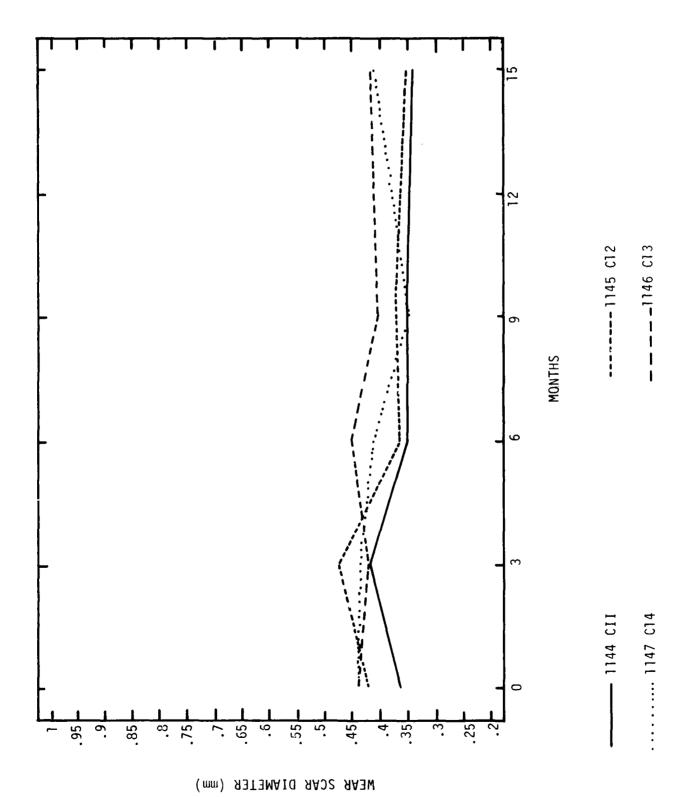

There was no indication that any of the other additives, namely antioxidant, static dissipator additive or fuel system icing inhibitor, were effective as a lubricity enhancer.

The corrosion inhibitor which displayed the most effectiveness over the 15-month test was CII (Fig 6). With the minimum effective concentration, only the 0-month and the 3-month interval test showed marginal lubricity behavior. At the end of the test period, both minimum effective and maximum allowable concentrations exhibited good lubricity.

CI3 exhibited more erratic behavior (Fig 7). The differences exhibited at the 3-month interval were probably due to inherent repeatability problems in generating the wear scar diameters. The fuel sample (1146) which contained the minimum effective concentration did fall within the marginal area after completion of 15 months in storage. The CI4 sample displayed similar results (Fig 8).

The CI2 sample performed well at the maximum allowable level (Fig 9). The minimum effective concentration of CI2 exhibited minimally acceptable behavior. At the 3-month test interval, it surpassed the marginal level of lubricity. By the fifteenth month, though, it had a marginally acceptable WSD.

At the end of the 15-month interval, all fuels with the minimum effective concentration of corrosion inhibitor displayed marginally acceptable lubricity and could be used appropriately in those systems which are not considered lubricity sensitive. However, the optimum concentration was not determined for each of the corrosion inhibitors.



Branch security paramet

BOCKSCO BESSEESE WASHING

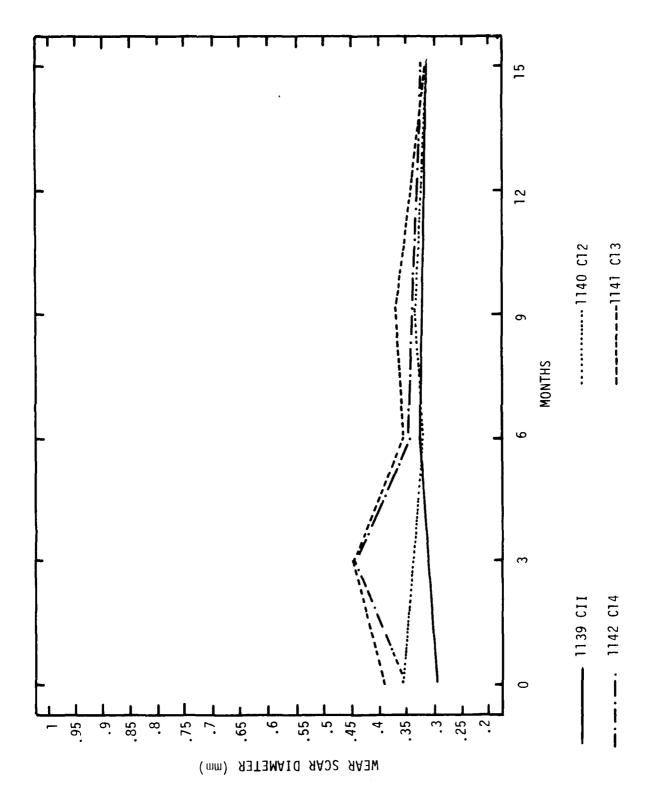

CONTRACTOR RESERVES NOT SERVED FOR SERVED FO

Figure 3. Series I Control Fuels B.O.C.L.E. Results

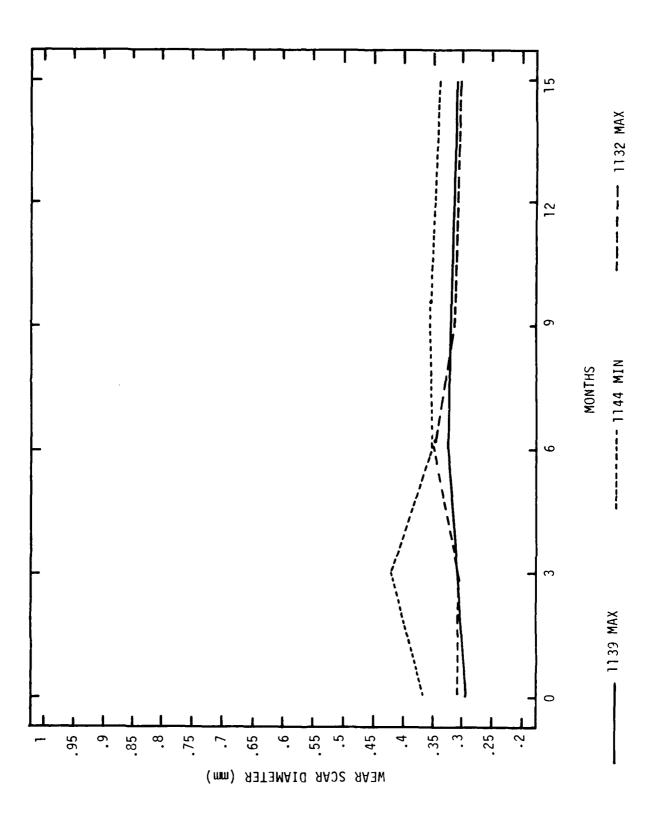
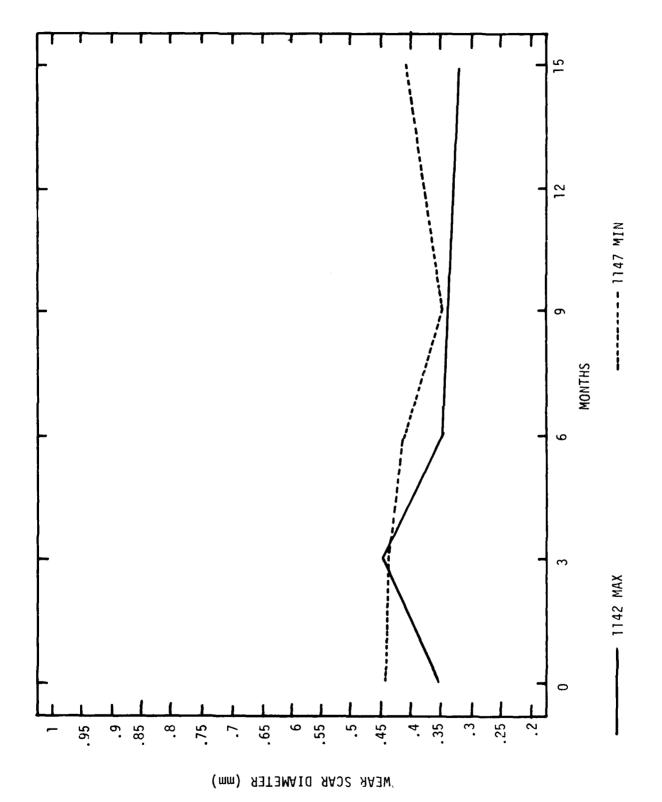

THE PROPERTY OF THE PROPERTY O

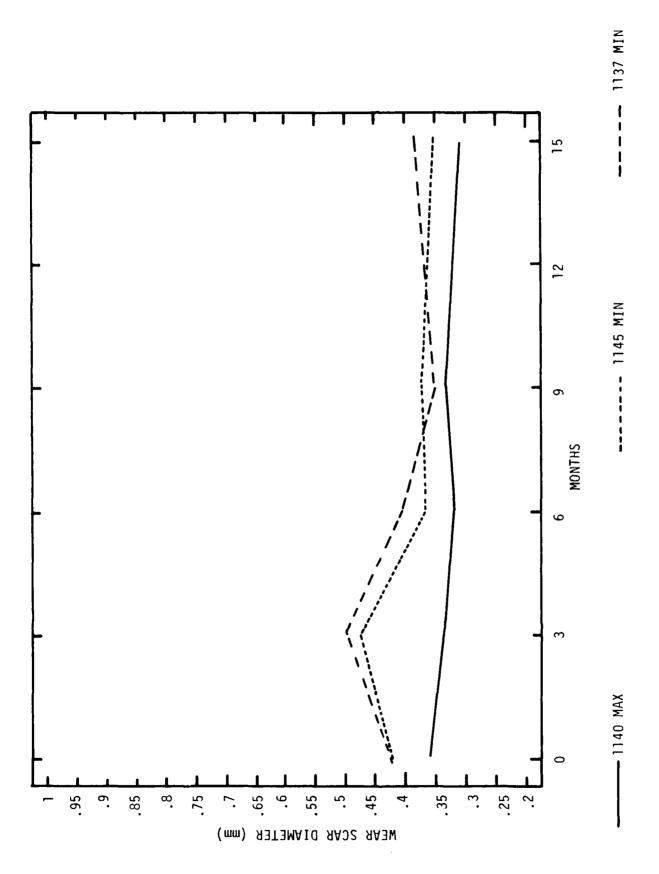
Figure 4. Minimum Corrosion Inhibitor B.O.C.L.E. Results

HERE I RECORDED BUILDING WINDOWS

Figure 5. Maximum Corrosion Inhibitor B.O.C.L.E. Results



ASSESSED TERROSES TERROSES FORESTANDOS ESPECIAS PROCESSES PROCESSES PROFESSOR PROFESSOR PROFESSOR


Figure 6. CII B.O.C.L.E. Results

THE THE PROPERTY OF THE PROPER

Figure 7. Cl3 B.O.C.L.E. Results

seed reserves economic reserves manufacturations

ESTER PERSONAL PRIMITION PRIMITION SOUSSESSESSESSESSESSESSESSES PRIMITIONS PRIMITION PROPERTY PRIMITION PR

Figure 9. Cl2 B.O.C.L.E. Results

7. Electrical Conductivity

PRODUCE STANDARD SERVICES SERVICES PROPERTY SERVICES

TO COMPANY TO COMPANY

Fuel electrical conductivity was measured using a portable handheld meter as prescribed by ASTM D2624, "Electrical Conductivity of Aviation Fuels Containing a Static Dissipater Additive." The JP-4 specification requires 200 to 600 picosiemens per meter (pS/m) or Conductivity Units (CU). The electrical conductivity of the test fuel was initially measured for the original drums of fuel. This measurement was taken at WPAFB after the drums were prepared as described in the "Origin of Test Fuel" section of this report. The drums were stored in cold storage for 15 months, with the exception of 0711 and 0712. At 15 months, a final reading was taken for all of the drums. The conductivity of the Series I and Series II test samples made from these drums was measured at the ninth and fifteenth month.

By the end of the test program, six drums of the 19 tested by the Fuels Branch had an acceptable conductivity. Of the Series I and Series II test samples, only three, 0711 (a drum), 1133 and 0761 A/B had a conductivity greater than 200 CU. By SFTLA results, 0712 also had an acceptable conductivity. The failure of the fuel to meet conductivity requirements was probably due to non-pretreating of fuel cans and transfer of the fuel from drum to storage can to sample container. For example, at 15 months, drummed 0722 fuel had an average conductivity of 149 CU, while the more transferred five gallon cans of 0722 (A through D) had an average conductivity of 26 CU. After studying the results for all drums and test samples, no trend was found as to time, amount of additive, type of additive, or combination of additives.

8. Naphthalenes

PROGRAM SECTIONS PROGRAMS

the production become production and the production of the product

Drummed fuel samples 0711, 0712, 0718, 0722 and 0761 were analyzed at the beginning of the test program for hydrocarbon type by Monsanto Research Corporation (Reference 5). A modified ASTM Method D2789 and Monsanto Method 21-PQ-83-63 were used. No naphthalenes were found in any of the five samples by either method.

Specification Samples

Two drums of shale fuel, samples 0711 and 0712, contained additives as required and allowed by the specification, including the maximum allowable amount of AO2 and CII. These duplicates were stored for 15 months, one in cold storage (0711) and one in outdoor storage (0712). Samples from these drums were tested at each of the test periods to determine if they met MIL-T-5624L specifications for JP-4 (Table 9).

Both fuels performed well and met the specification with few exceptions. In the ninth month, 0711 failed to meet requirements for Water Separation Index, as did 0712 in the zero and 15th month. These unsatisfactory results may be attributed to the additives, since both contained anti-static additive and maximum allowable corrosion inhibitor. These fuels received high water separation ratings at three months. A duplicate five gallon sample (1139) passed with more than marginal ratings. Sample 0711 failed to meet conductivity requirements at the three month test. This was probably due to instrument inaccuracies or temperature differences, since the fuel met specification for all other time periods.

TABLE 9. SPECIFICATION FUEL TEST RESULTS

	0		M O N 7	T H S	9		15	
	0						1	
	0711	0712	0711	0712	0711	0712	0711	0712
Color (Saybold)	+30	+30	+30	+30	+30	+30	+30	+30
Total Acid No., mg KOH/g	0.004	0.005	0.008	0.008	0.005	0.006	0.005	0.006
Aromatics, vol %	12.1	12.0	.11.0	10.9	11.9	11.5	12.1	12.1
Olefins, vol %	0.9	0.7	0.8	0.7	0.7	0.5	1.2	0.9
Mercaptan Sulfur, wt %	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Sulfur, Total, wt %	0.00	0.00	0.01	0.02	0.01	0.00	0.00	0.00
Distillation IBP deg C 10% Rec deg C 20% Rec deg C 50% Rec deg C 90% Rec deg C Final Boiling Pt deg C	24 69 101 158 219 249	24 69 101 157 219 249	24 68 100 155 217 247	24 68 100 155 217 248	24 69 101 155 217 247	24 69 101 155 217 248	24 68 100 156 218 253	24 68 100 156 218 251
Density, kg/Liter	0.765	0.765			•			
Gravity, API			53.6	53.5	53.6	53.6	53.5	53.5
Vapor Pressure, kPa (psi)	19		(2.9)	(2.9)	(2.8)		(3.0)	(3.0)
Freezing Point, deg C (deg F)	-73	-70	(B-99)	(B-99)	(B-99)	(-95)	(B-99)	(-96)
Net Heat of Combustion, MJ/kg	43.5	43.5						
Hydrogen Content, wt % Smoke Point, mm	14.3	14.3			27	27		
Copper Strip Corrosion	1A							
Thermal Stability at 260°C Change in Pressure Drop, mm of Hg Preheater Deposit Code TDR Rating Code	0	0 1 1	0 1 1	0 1 1	0 1 1	0 1 0	0 1 0	C 1
Existent Gum, mg/100ml	0.4	0.0	2.0	0.4	0.2	1.6	0.0	1.0
Particulate Matter, mg/L	p.1	0.1	0.0	0.0	0.2	0.0	0.2	0.3
Filtration Time, minutes	5	5	6	6	5	5	5	5
Water Reaction Interface Minisonic	1 74	1 66	1 83	1 85	1 69	1 70	1 77	1 66
Fuel System Icing Inhib, vol%	0.13	0.12	0.12	0.10	0.13	0.13	0.13	0.13
Conductivity, pS/m(CU)	200	295	180	200	290	300	265	260

V. CONCLUSIONS

CONTROL TO SECURE TO SECUR

The shale JP-4 fuel in this test program performed very well in the areas of thermal and storage stability. Fuel lubricating quality was unacceptable without corrosion inhibitor. While some antioxidant and corrosion inhibitor additives performed better than others, no additives outside those listed in the JP-4 specification were required.

Specification tests that were performed throughout the program were JFTOT, particulates/filtration time, and existent gum. All fuel samples met the specified limits for these tests for all test times. All test samples were tested for electrical conductivity at nine and fifteen months and most were low, except two samples that were in their original container throughout the test. These had acceptable conductivity, suggesting that the fuel itself would perform well. In a minisonic test, used to evaluate water separation characteristics, all samples had an acceptable water separation at most time periods, except those containing JFA-5. Corrosion inhibitor caused some results to be intermittently below requirements.

In non-specification tests, the peroxide level was low for all samples and non-existent for some, except those not containing anti-oxidant. For lubricity evaluation using the Ball-on-Cylinder Lubricity Evaluator, the shale fuel did not perform well unless a maximum concentration of corrosion inhibitor was present.

The best performing antioxidants overall were AO2, AO6 and AO5. This is considering the adverse effect of AO1 with maximum corrosion inhibitor on JFTOT results and the peroxides found in samples containing

A07, A08 and A09 in either the minimum or maximum concentrations. A09, the resorcinol antioxidant, also adversely affected water separation at two times the maximum concentration. A04 had JFTOT results bordering on unacceptable until the fifteenth month, and at the fifteenth month, peroxides were beginning to form. Peroxide test results showed that the tertiary butyl phenolic antioxidants were the most effective in preventing peroxidation in the shale fuel. This correlation did not extend to JFTOT results.

consists and a property appropriate and a property and a property

Considering the four corrosion inhibitor/lubricity additives, CII performed the best in Ball-on-Cylinder tests at the maximum concentration. It did not do as well in samples in outdoor or cold storage as it did in samples stored at room temperature. CI3 at maximum concentration adversely affected JFTOT results and maximum CI3 with AO1 antioxidant showed some existent gum. Maximum CI1 and CI2 performed better in the lubricity evaluation than maximum CI4 and CI3, and similarly for the minimum concentrations.

The JFA-5 and NDA additives improved thermal stability but were not required for the test fuels to meet JP-4 specification requirements for the thermal stability. JFA-5 adversely affected water separation.

Concluding, then, shale JP-4 fuel was, for the five year simulated test period, a quality jet fuel. To maintain high quality, a minimum amount of antioxidant is required to prevent peroxidation and a maximum concentration of corrosion inhibitor is required to improve lubricity. Conductivity of the fuel should be monitored.

REFERENCES

1. Memmott, Vincent J., Report of Operations for the USDFSC of the Production of Jet Fuel from Geokinetics Shale Oil, at Caribou Four Corners Refinery, Woods Cross, Utah; November 1982 through November 1983, printed by Carribou Four Corners Refinery under DoD Contract DLA 600-83-C-5000, January 1984.

Problem Problems and the second of the second second of the second secon

- 2. D.S. Duvall, "Analysis of a Deposit Found in a Shale JP-4 Sample," Technical Operating Report No. 2035-072, AF Contract Number: F33615-81-C-2035, Monsanto Research Corporation, 15 December 1983.
- 3. W.G. Dukek, "Test Programs and Methods for Water Separation Characteristics of Aviation Fuels," ASTM Research Report, File No. RR D-2-1050; Sponsoring Committee D-2 TD J-X, 1 September 1983.
- 4. Weston, J.L., Part III, Accelerated Mission Test Using Shale Oil

 Derived JP-4 Part II-F100 Aviation Gas Turbine, AFWAL-TR-84-2092, United

 Technologies Corporation, Pratt & Whitney Engineering Division, Florida,

 September 1984.
- 5. D.S. Duvall and A.D. Snyder, "Determination of Naphthalenes in Shale Fuels," Technical Operating Report No. 2035-076, AF Contract Number F33615-81-C-2035, 23 December 1983.

APPENDIX A DRUM TO TEST SAMPLE RELATIONSHIP

ESTANTO PROPERTO PERSONAL PROPERTO DE CONCESSO PROPERTO PROPERTO PERSONAL PERSONAL PERSONAL PERSONAL PROPERTO PONSO.

SHALE APPITIVE PROGRAM

SAMPLE ORIGIN DAUGHTER CAN POSE #	1150, 1151	1132, 1135, 1134, 1135	1156, 1157, 1158	1139, 1140, 0718 (2 CONTROLS)	1141, 1142, 1143, 1144	1145, 1146, 1147, 1148	. NONE	0722 (2 CONTROLS)	0723, 1149	0724, 1150	0725, 1151	0726, 1152	0727, 1153	0728, 1154	0729, 1155	0730, 1156	0761 (2 CONTROLS)	
DRUM POSF #	0714	0716	0-1:	0718	0719	0720	721	722	0723	0724	725	0726	0.27	0728	0729	0730	0.761	0762 - 0768 COLD STORAGE

APPENDIX B TEST RESULTS BY TEST

TABLE B-1. SERIES I (ROOM TEMPERATURE STORAGE) JFTOT TEST RESULTS

THE PROPERTY DESCRIPTION OF THE PROPERTY OF TH

T	TEMP (°C)		0			ო			თ			15	
		VISUAL CODE	Ĕ	. Δ P , mmHg	VISUAL CODE	%	△ P. mmHg	VISUAL CODE	E E	₽, mmHg	VISUAL CODE	icc	4P.
	310	В.Р.	B. P.	В.Р.		11	2		5	*	В.Р.	В.Р.	B.P.
	310	В.Р.	B. P.	В.Р.	2	17.5	0		2	0	В.Р.	В.Р.	В.Р.
	310	2	9.3	0	2	13	0		က	0		1	이
	310		2.5	0	2	7	0.3		2	0		17.5	이
	310	-1	5	0	2	9.5	0	2	10	0	-1	2	이
	310		2	0.1	1	7	0		4	0	-	4	이
	310		2.5	2	-1	4	0		4	0.2	2	11	0.2
	310 290	2 -	15 I	0.5	1 4	13	0.3	- 1	5.5	0.1	۳ ۱	11.5	0.1
	310 290	5+	12	0 1	34	20.5	5	F-1 1	۲.	0 1	2 -	∞ ι	0 1
	310 290	2 1	8.5	0 1	4 2	10	00	2 -	15	0 1	4+	0.4	00
	310 290	7 [7.5	00	4	23.5	0		2 -	0 1	2 -	4 1	0 1
	310 290	- 1	2.5	0 1	г п	د 4	0.1	2 -	. 5	* 1	⊢ 1	1.5	0 1
	310	2	5.5	-	11	5	0		7	0		8	이
	310	-1	4.2	0		1	0		က	0		4.5	0

TABLE B-1. SERIES I (ROOM TEMPERATURE STORAGE) JFTOT TEST RESULTS (CON'T)

gesses - teacharas - parameters S

	VISUAL DA	O ATOR AP.		/TSUAL A	3 TOR		VISUAL	9 A TOR AP	يا الم	VISUAL	15 ATOR AP	, S
COUR IMMIG		G		CODE		бниш	CODE		5 Hulli	CODE	E	STILL
1 3.8	ω	9		-	1.5	0		4.5	*	-	9	0.3
1 4		0 1	0.3	1 3	3.1.5	0.2	п 1	1.5	* 1	- 1	2 -	0 1
2 14		9	0.3		10	0.1		0	0.3	2	10	0
2 10.5	5.5	9	0.2		=	0	2	11.5	0.4		4.5	0
2 2.5	2	01		~ ·	13	0.2	1	11.5	* 1	n 13	14	0.5
1 3		9	0.2	2	10.5	0		3	*	2	11	0.1
1 3.5	5	이	0.2		2.5	0		2	0		4	0
1 5.6	9	0		2	10.5	0	2	14	*	2	4.5	0
1 10.5	.5	0			5	0		6	0.2		2	0.1
1 4		9	0.4	2	18	0.1			0.2	2	6	2
1 4.8	80	0	0.4	2	12	0.1		4	0.3			0
2+ 4.8	ω)	0		1	7	0		9	*	-1	4	9

B.P. = Break Point Test

⁼ Pressure Transducer Non-Operative

TABLE B-2. SERIES II (110°F STORAGE) JFTOT TEST RESULTS

		۲• ق	0.0	>	0	ا ٥ د	이	0.1	0	011	1.0.1	011	0.2	0.5	- 11	0 11
	15	∆TDR ∆P, mmHg	96,		29	7 7	4.5	3.5	2	4 1	б I	14	6.3	39.5	m 1	9 -
		VISUAL CODE	4 4 4 5	-	4+	4 —		- 1	-	- 1	- 2	2 -	2	4 -	F 1	2 -
			0 1	•	0		*	00	0	0.2	2.0	0 1	0.2	00	0 1	0 1
	6	ATOR AP, mmHg	4.5	•	4	1 1	8	24	77	1.55	6 I	12	-	12	۲.	9.5
		VISUAL	2 1	•	_	, ,	-	m -	2	~ ı	— т	2 -	-	ю	- 1	- 1
		ΔP. nmHg	٥ ،	•	0		٥.٦	0 1	0	0.3	0 1	00	0	00	00	- 1
THS	m	X	19.5	•	10.5	1 1	20	2	12	21 2.5	16	30	18	31	22 3	15
MONTHS		VISUAL	21	•	2	1 1	2	2 -	-	ю г -	2 1	4+ 1	2	4+	4 1	2 -
		∆P, mmHg	0 1	•	က		0.3	00	2	0.2	0.4	~ 0	0.2	0.1	0-	0
	0	∆ TOR ∆ mm	. 5	•	10		24.2	26.6 1.5	20	e. 3	27.5 2.5	24.5	3.5	15.8	14	33
		TSUAL CODE	~ 1	•	2	• •	2	4 ~	2+	2 1	4-	4 -	-	4 -	e –	4+
TEMP (OC)	ובווג ו כי		320	787	320	300 280	320	320 300	320	320 300	320 300	320 300	320	320 300	320 300	320
בונט בונט	ruer code		0722 A/B		0722 C/D		0723 A/B	0724 A/B	0725 A/B	0726 A/B	0727 A/6	0728 A/E	0729 A/B	0730 A/B	1064 A/B	1149 A/B

TABLE 8-2. SERIES II (110°F STORAGE) JFTOT TEST RESULTS (CON'T)

CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

FUEL CODE	TEMP (°C)		0			ო			თ			15	
		VISUAL CODE	F	^ P • mmHg	VISUAL CODE	¥	∆P, mmHg	VISUAL CODE		l r en	VISUAL CODE	∆TOR ∆P mmH	. ∆P, mmHg
1150 A/B	320 300	2 -	3.9	10	+ 1	31	0.1	۲ ۲	22 1	0 -	1.3	17 2.5	0.2
1151 A/B	320 300	2+	13	0 1	æ ⊢	27.5	0	1	6 1	0 1	1	ו טי	0 1
1152 A/B	320 310	5 3	14 12.5	00	2 1	16	0	2	7	0 -	٠, ١	4	0 1
1153 A/B	320	2	10.5	0.2	2	20	6.0			0	2	4	0.3
1154 A/B	320 310 300	141	25 5	0.6 0.1	1 - 4+	22.5	0.1	2 1 1	15.5	0 1 1	2 - 1	~	0 1
1155 A/B	320 300	2 -	7.5	0.1	2 -	6.5	0 1	r-4 1	0.5	0.4	4-1	21	00
1156 A/B	320 300	4+	20	0.3	нз	10.5	0.1	4	19	0.1	4	11 3.5	0.1
1710 A/B	320			ı		3	0.4		7	0			0
1711 A/B	320	1				7.5	-	-	3	0	2	10	이

TABLE B-3. PARTICULATE/FILTRATION TIME TEST RESULTS

FUEL CODE

CONTRACTOR OF THE PROPERTY OF

PARTICULATES(mg/1)/FILTRATION TIME(min)

		1101	11115	
	0	3	9	15
0711	0.1/5	0.0/6	0.2/5	0.2/5
0712	0.1/5	0.0/6	0.0/5	0.3/5
0718 A/B	0.1/4	0.2/6	0.0/5	0.1/5
0718 C/D	0.1/4	0.1/6	0.1/5	0.1/5
0722 A/B	0.2/4	0.2/6	0.2/5	0.5/3
0722 C/D 0723 A/B	0.1/4	0.2/6	0.2/5	1.0/5
0723 A/B 0724 A/B	0.1/4 0.1/4	0.2/6 0.2/6	0.2/5 0.3/5	0.1/4 0.2/5
0725 A/B	0.2/4	0.2/6	0.2/5	0.1/4
0726 A/B	0.2/4	0.2/6	0.1/5	0.1/4
0727 A/B	0.1/4	0.2/6	0.2/6	0.2/5
0728 A/B	0.1/4	0.2/5	0.1/5	0.2/5
0729 A/B	0.1/4	0.1/5	0.2/5	0.2/5
0730 A/B	0.1/5	0.1/6	0.2/6	0.1/4
0761 A/B	0.1/5	0.1/6	0.2/5	0.1/4
0761 A/B	0.1/5	0.3/6	0.2/5	0.1/4
1064 A/B	0.2/5	0.2/5	0.2/5	0.1/4
1064 C/D	0.1/5	0.2/6	0.1/5	0.1/4
1130 A/B	0.2/5	0.1/5	0.3/8	0.1/5
1131 A/B 1132 A/B	0.1/4	0.1/4	0.1/5	0.1/5
1132 A/B 1133 A/B	0.2/4 0.3/5	0.2/6 0.1/5	0.4/6 0.2/5	0.2/5 0.3/5
1134 A/B	0.2/5	0.1/5	0.1/6	0.3/5
1135 A/B	0.3/5	0.1/6	0.3/6	0.1/4
1136 A/B	0.2/4	0.1/5	0.3/6	0.2/4
1137 A/B	0.5/4	0.1/6	0.2/6	0.3/4
1138 A/B	0.1/3	0.1/7	0.2/6	0.2/5
1139 A/B	0.1/3	0.1/6	0.2/5	0.3/4
1140 A/B	0.4/5	0.2/6	0.1/5	0.1/4
1141 A/B	0.3/5	0.2/6	0.2/5	0.2/4
1142 A/B	0.2/4	0.1/6	0.0/5	0.2/4
1143 A/B	0.2/5	0.3/6	0.2/6	0.3/5
1144 A/B	0.3/5	0.3/6	0.1/6	0.2/4
1145 A/B	0.3/5	0.2/6	0.2/6	0.3/4
1146 A/B 1147 A/B	0.2/4 0.3/4	0.1/6	0.1/5	0.1/5
1147 A/B	0.3/4	0.0/6 0.2/7	0.1/6 0.1/6	0.2/5
1149 A/B	17.2/4	0.1/5	0.1/6	0.3/5 0.3/5
1150 A/B	0.1/4	0.2/5	0.3/5	0.2/5
1151 A/B	0.2/5	0.0/6	0.5/5	0.2/5
1152 A/B	0.1/4	0.0/6	0.3/6	0.2/5
1153 A/B	0.2/4	0.2/6	0.2/6	0.2/5
1154 A/B	0.2/4	0.1/4	0.4/5	0.2/4
1155 A/B	0.2/4	0.1/6	0.1/6	0.2/4
1156 A/B	0.2/4	0.1/5	0.3/5	0.2/4
1710 A/B		0.2/5	0.2/6	0.1/4
1711 A/B		0.4/4	0.3/5	0.3/5
		5 A		

TABLE B-4. EXISTENT GUM TEST RESULTS

	JEL	r	OD	C
гι	ノニレ	. u	Vυ	-

EXISTENT GUM (mg/100ml)

	С	3	9	15
0711 0712 0718 A/B 0718 C/D 0722 A/B 0722 C/D 0723 A/B 0724 A/B 0725 A/B 0726 A/B 0727 A/B 0728 A/B 0729 A/B 0730 A/B 0761 C/D 1064 A/B 1064 C/D 1130 A/B 1131 A/B 1132 A/B 1133 A/B 1134 A/B 1135 A/B 1136 A/B 1137 A/B 1138 A/B 1139 A/B 1140 A/B 1141 A/B 1142 A/B 1143 A/B	0.4 0.0 0.2 0.0 0.2 0.0 0.4 0.0 0.6 0.6 0.6 0.4 0.2 0.0 0.6 0.0 0.6 0.4 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.0	2.0 0.4 0.0 0.0 0.6 0.4 0.2 0.0 0.8 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0	0.2 1.6 0.4 0.4 0.0 0.6 0.0 1.2 0.6 0.6 0.2 0.0 0.4 0.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0	0.0 1.0 0.0(A) 0.6 0.0 3.4 0.2 0.6 0.0 0.2 0.4 0.2 0.6 0.0 0.2 0.6 0.0 0.2 0.6 0.2 0.6 0.0 0.2 0.6 0.0 0.2 0.6 0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1145 A/B 1146 A/B 1147 A/B 1148 A/B 1149 A/B 1150 A/B 1151 A/B 1152 A/B 1153 A/B 1154 A/B 1155 A/B 1156 A/B 1710 A/B 1711 A/B	0.0 0.4 1.0 0.0 0.2 0.0 0.0 0.4 0.2 0.0	0.4 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.8 0.4 0.8 0.6	0.4 0.0 0.4 0.2 0.4 0.6 0.8 0.0 0.2 0.6 0.4 0.8 0.06	0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0

TABLE B-5. PEROXIDE TEST RESULTS

FUEL CODE		PEROXIDE NU	MBER (ppm)	
		MON	тнѕ	
	0	3	9	15
0711	0	0	0	0
0712	0	0	0	0
0718 A/B	0.140	0	0	0
0718 C/D	0.140	0	0.320	0
0722 A/B	0	0.302	0.640	1018.89 1073.69
0722 C/D	0	0.795	2.200 2.400	538.64 (C) 460.15 (C) 828.57 (D) 1004.77 (D)
0723 A/B	0	0	O	0
0724 A/B	0	0	0	0.415
0725 A/B	0	0	0	0.520
0726 A/B	0.279	0	0	0
0727 A/B	0	0	0.320	.526
0728 A/B	0	0	0.160	1.442 1.420
0729 A/B	0	0.087	O	5.560 4.420
0730 A/B	0	0	0	0
0761 A/B	0	0	0.080	0
07 6 1 C/D	0.356	0	0	0
1064 A/B	0.106	0	0.080	1.151 0.720
1064 C/D	0.074	0	0.240	0
1149	0	0	0	0

TABLE B-5. PEROXIDE TEST RESULTS (Con't)

BERGAL PERCOCKER PROPERTY REPORTED ACCURAGE SECURIOR SECURIOR SECURIOR PROPERTY PROP

FUEL CODE		PEROXIDE NU	MBER (ppm)		
	MONTHS				
	0	3	9	15	
1150 A/B	0	0	0	0	
1151 A/B	0	0	0	0.525	
1152 A/B	0	0	0	0	
1153 A/B	0	.016	.960	0.701	
1154 A/B	0	0	0.480	1.586 1.830	
1155 A/B	0	0	3.400 3.000	6.592 5.710	
1156 A/B	0.070	0.141	0.320	0.841	
1710 A/B	-	0	0.640	1.553 1.740	
1711 A/B	-	0	0.880	1.783 2.830	

^{*} The minimum detectable limit for the ASTM Peroxide Determination procedure is not known at this time. A O ppm peroxide number indicates that there was no notable color change to the sample with the addition of the KI solution and starch making titration with the sodium thiosulfate impossible.

TABLE B-6. MINISONIC TEST RESULTS

FUEL CODE

pessel inspirate analysis apparets analysis application

WATER SEPARATION INDEX

	MONTHS					
	0	3	9	15		
0711	74	83	69	77		
0712	66	85	70	66		
9718 A/B	90	99	88	93		
0718 C/D	90	99	93	97		
0722 A/B	78	88	95	72		
0722 C/D	90	85	94	56		
0723 A/B	74	96	100	91 93		
0724 A/B	79	96 91	96 90	93		
0725 A/B 0726 A/B	85 74	88	92	84		
0727 A/B	74 78	84	90	85		
0728 A/B		99	93	72		
0729 A/B	82	96	96	81		
0730 A/B	63	93	89	93		
0761 A/B	92	97	92	99		
0761 C/D	89	99	89	90		
1064 A/B	67	98	97	97		
1064 C/D	85	79	86	89		
1130 A/B	75	81	82	92		
1131 A/B	88	86	88	95		
1132 A/B	72	74	56	86		
1133 A/B	81	90	65	73		
1134 A/B	63	56	44	67		
1135 A/B	71	6]	58	67		
1136 A/B	86	77	60	81		
1137 A/B	91	95	79 41	88		
1138 A/B 1139 A/B	39 87	57 88	67	56 95		
1140 A/B		87	81	89		
1141 A/B	73	87 81	63	76		
1141 A/B	66	88	73	74		
1143 A/B	85	91		67		
1144 A/B	83	92	72	94		
1145 A/B	84	93	77	90		
1146 A/B	83'	81	95	86		
1147 A/B	06	90	77	88		
1148 A/B	49	55	40	61		
1149 A/B	80	94	87	85		
1150 A/B	84	94	98	96		
1151 A/B	92	96	90	98		
1152 A/B	92	90	96	93		
1153 A/B	82	75	86	95		
T154 A/B	89	86	94	85		
1155 A/B	82	93	92	75		
1156 A/B	76	88	77	90		
1710 A/B 1711 A/B		88	81	89		
1/ 11 M/D		65	57	57		

FUEL CODE					
TOLL COPE	RUN #		WEAR SO	CAR DIAMETE	R (mm)
				MONT	HS
		0	3	6	9
0711	1	0.350	0.335	0.335	0.340
07	2	0.400	0.350	0.330	0.330
A71A	AVG	0.375	0.342	0.342	0.335
0712	2	0.380 0.375	0.340 0.365	0.330 0.335	0.330 0.325
	AVG	0.377	0.352	0.332	0.327
0718 A/B	7	0.575	0.430	0.470	0.460
	2 3	0.635	0.470 -	0.470 -	0.390
	AVG	0.605	0.45	0.47	0.425
0718 C/D	1	0.815	0.555	0.525	0.605
	2 3	0.805	0.550	0.545 -	0.700
	AVG	0.810	0.522	0.535	0.6525
0722 A/B	1	0.405	0.435	0.320	0.380
	2 AVG	0.360 0.382	0.440 0.437	0.335 0.327	0.345 0.362
0722 C/D		0.490	0.440	0.310	0.340
	2	0.340	0.415	0.335	0.350
0761 A/B	AVG	0.410 0.815	0.427 0.530	0.322 0.565	0.345 0.460
0701 A/B	2	0.760	0.520	0.650	0.460
	3	-	-	-	-
0761 C/D	AVG	0.787 0.525	0.525 0.555	0.607 0.590	0.452 0.440
0/01 0/0	2	0.480	0.590	0.540	0.440
	3	-	-	-	-
1064 C/D	AVG	0.502	0.572 0.345	0.565	0.465
1004 (/)	2	0.470 0.435	0.345	0.410 0.365	0.355 0.335
	AVG	0.452	0.345	0.387	0.345
T132 A/B	7	0.310	0.310	0.345	0.320
	2 AVG	0.305 0.307	0.305 0.307	0.350 0.347	0.310 0.315
1137 A/B	1	0.380	0.430	0.460	0.365
	2	0.470	0.560	0.375	0.365
T139 A/B	AVG	0.425 0.270	0.495 0.310	0.417 0.345	0.365 0.325
1100 //, 5	2	0.320	0.305	0.305	0.323
	AVG	0.295	0.307	0.325	0.317

TABLE B-7. B.O.C.L.E. TEST RESULTS (CON'T)

Kasanda Panandas Pana

FUEL CODE	RUN #	WEAR SCAR DIAMETER (mm)						
				МОМТ	THS			
		0	3	6	9	15_		
1140 A/B	1	0.370	0.335	0.330	0.335	0.315		
	2	0.350	0.340	0.310	0.335	0.310		
11/11 X / B	AVG	0.360	0.337	0.320	0.335	0.312		
1141 A/B		0.375	0.440	0.340	0.345	0.335		
	2 3	0.405	0.455	0.370	0.395	0.265		
			-	-		0.345		
3 7 4 7 7 7 7	AVG	0.390	0.447	0.355	0.370	0.315		
1142 A/B	1	0.370	0.440	0.360	0.345	0.325		
	2	0.335	0.450	0.335	0.335	0.320		
7744 475	AVG	0.352	0.445	0.347	0.340	0.322		
1144 A/B	l	0.365	0.430	0.345	0.350	0.330		
	2	0.365	0.410	0.360	0.360	0.350		
77 <i>7</i> 7 775	AVG	0.365	0.420	0.352	0.355	0.340		
1145 A/B		0.370	0.460	0.375	0.375	0.360		
	2	0.475	0.490	0.360	0.375	0.350		
1112 138	AVG	0.422	0.475	0.367	0.375	0.355		
1146 A/B]	0.440	0.400	0.480	0.405	0.410		
	2	0.445	0.445	0.425	0.410	0.425		
	AVG	0.442	0.422	0.452	0.407	0.417		
1147 A/B]	0.410	0.440	0.410	0.355	0.430		
	2	0.475	0.435	0.415	0.345	0.395		
	AVG	0.422	0.437	0.412	0.350	0.412		
1710 A/B	1	-	0.395	0.335	0.330	0.340		
	2	-	0.340	0.355	0.340	0.360		
	AVG	-	0.367	0.345	0.335	0.350		
1711 A/B	1	-	0.400	0.355	0.325	0.325		
	2	-	0.390	0.330	0.330	0.330		
	AVG	-	0.395	0.342	0.327	0.327		

^{*} The lubricity of the above fuels was tested on the Furey B.O.C. rig at the onset of the program (O month interval). The remainder of lubricity testing was performed on the Interav B.O.C. rig.

^{* 84-}POSF-1710 and 84-POSF-1711 were not introduced to the program until after the 0 month interval.

TABLE B-8. DRUM CONDUCTIVITY TEST RESULTS

FUEL CODE	O MONTH TEMP, °F	COND, CU	15 MONTH TEMP,°F	COND,CU
0711	63	210/210 (200)*	69	268/272 (265)
0712	80	275/275 (295)	69	171/169 (270)
0713	83	200/200	69	80/77
0714	61	18/19	69	
0715	60	3/3	69	
0716	64	160/160	69	1013/1016
0717	82	230/230	69	975/979
0718	76	280/280	9	219/219
0719	65	225/220	69	230/230
0720	60	240/240	69	163/165
0721	52	220/220	69	163/165
0722	77	260/240	69	150/148
0723	64	260/260	69	130/133
0724	58	240/240	69	136/138
0725	83	310/300	69	130/135
0726	69	280/270	69	134/138
0727	77	295/295	69	136/140
0728	66	300/290	69	190/195
0729	66	280/280	69	128/133
0730	90	240/260	69	953/958
0761	78	260/270	69	196/202
1064				

^{* () -}SFTLA TESTS

Seem second virtual virtues seements

TABLE B-9. TEST SAMPLE CONDUCTIVITY TEST RESULTS

FUEL CODE	O MONTH TEMP, °F	COND, CU	9 MONTH TEMP, °F	COND, CU	15 MONTH TEMP, °F	COND, CU
0714 1130 A/B 1131 A/B	61	18/19	70 70	60/58 3/3	69 69	33/34 3/3
0716 A/B 1132 A/B 1133 A/B 1134 A/B 1135 A/B	64	160/160	70 70 70 70 70	290/292 320/315 290/290 143/146	69 69 69 69	1013/1016 114/116 273/269 146/147 106/108
0717 1136 A/B 1137 A/B 1138 A/B	82	230/230	70 70 70 70	93/91 130/128 141/143	69 69 69	975/979 80/80 105/108 115/118
0718 1139 A/B 1140 A/B 0718 A/B 0718 C/D	76	280/280	70 70 70 70 70	92/86 89/91 40/40 69/65	69 69 69 69	219/219 70/75 97/66 142/141 140/140
0719 1141 A/B 1142 A/B 1143 A/B 1144 A/B	65	225/220	70 70 70 70 70	76/74 180/170 43/43 60/59	69 69 69 69	230/230 68/71 168/173 28/30 90/90
0720 1145 A/B 1146 A/B 1147 A/B 1148 A/B	60	240/240	70 70 70 70 70	90/89 67/68 160/159 67/69	69 69 69 69	163/165 102/106 107/107 138/138 69/68
0722 0722 A/B 0722 C/D 1710 A/B 1711 A/B	77	260/240	70 70 70 70 70	73/72 93/92 27/26 19/19	69 69 69 69	150/148 30/35 20/21 40/42 27/30
0723 0723 A/B 11 49 A/B	64	260/260	70 70 70	112/110 106/104	69 69 69	130/133 123/120 100/99
0724 0724 A/D 1150 A/B	58	240/240	70 70 70	70/71 95/94	69 69 69	136/138 108/109 129/123
U725 U725 1151 A/B	83	310/300	70 70 70	104/104 95/94	69 69 69	130/135 173/172 120/120

lesses response to the execution commences in accordance outsides accordance response to the execution of the commences of th

TABLE B-9. TEST SAMPLE CONDUCTIVITY TEST RESULTS (CON'T)

	TABLE B-9.	TEST SAMPLI	E CONDUCTIV	ITY TEST RESU	LTS (CON'T)	
FUEL CODE	O MONTH TEMP, °F	COND, CU	9 MONTH TEMP, °F	COND, CU	15 MONTH TEMP, °F	COND,
0726 0726 A/B 1152 A/B	69	280/270	70 70 70	75/74 81/83	69 69 69	134/13 137/14 85/86
0727 0727 A/B 1153 A/B	77	295/295	70 70 70	156/155 50/47	69 69 69	136/13 150/14 42/35
0728 0728 A/B 1154 A/B	66	300/290	70 70 70	150/157 121/123	69 69 69	190/19 180/18 102/10
0729 0729 A/B 1155 A/B	66	280/280	70 70 70	70/71 84/83	69 69 69	128/13 124/12 79/79
0730 0730 A/B 1156 A/B	90	240/260	70 70 70	78/79	69 69 69	953/95 72/75 67/64
0761 0761 A/B 0761 C/D	78	260/270	70 70 70	62/63 73/76	69 69 69	196/20 210/20 73/76
1064 1064 A/B 1064 C/D			70 70	33/32 98/101	69 69	153/15 150/15
			63			

APPENDIX C TEST RESULTS BY SAMPLE NUMBER

The results for each sample are reported at the zero, three, nine and fifteen month sampling intervals. Samples selected for lubricity evaluation were also tested at six months. Two samples containing A09 antioxidant, 1710 and 1711, were added at the 3-month test time, so that 18-month data is included to complete the actual 15-month program. The data is reported as follows:

JFTOT - either as Br Pt (Break Point) or P (Pass) at a given temperature. A pass indicated less than three visual code rating less than 25 mm Hg at the given temperature.

Particulates - mg per liter/filtration time in minutes

Existent Gum - mg per 100 ml

Water Separation - index

Lubricity - wear scar diameter, mm

Peroxides - parts per million

Electrical Conductivity - picosiemens per meter

83-POSF-0711 55 Gallon Drum N₂ Blanket, Outdoor Storage

TOTAL PERSONAL RESISTANCE RECORDED PRODUCED INTERPREDICTION

BESSESSE ISSESSES BESSESSES BESSESSES

% Stadis - 450)		
volume - 3 and	8.4 LB/1000 BBL	8 LB/1000 BBL
FSII Conductivity	A02	CI1

TESTING RESULTS

9 MONTH	P @ 310 0.2/5 0.2 69 .33/.34/.335 0.0 290 0.13	
3 MONTH	P @ 310 0.0/6 2.0 83 .335/.35/.3425 0.0 180 0.12	
O MONTH	327°C Br Pt 0.1/5 0.4 74 .35/.40/.37 0.0 200 0.13	
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII	

*6 month Lubricity .335/.33/.3425

83-POSF-0712 55 Gallon Drum N₂ Blanket, Outdoor Storage

BOSS PRODUCT SCOURS SOCIONAL CONTRACTOR SCORES PROFESSOR PRODUCTION PRODUCTION SCORES SOCIONAL PRODUCTION PROD

ume % and Stadis - 450)
0.10 - 0.15 volume % 1 ppm (ASA - 3 and St 8.4 LB/1000 BBL 8 LB/1000 BBL
FSII Conductivity AO2 CII

TESTING RESULTS

		.325/.325/.325 0.0 260/171/169 0.13
	P @ 310 0.0/5 1.6 70	
3 MONTH	P @ 310 0.0/6 0.4 85	.34/.365/.3525 0.0 200 0.10
O MONTH	320°C Br Pt 0.1/5 0.0 66	.38/.375/.377 0.0 295 0.12
TEST	JFTOT Particulates Existent Gum Water Separation	*Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .33/.335/.3325

83-POSF-0718 (A&B) 5 Gallon Cans Room Temperature Storage

ດໍ່ງ - ກູ15 volume ຕໍ່	1 ppm (ASA - 3 and Stadis - 450)	8.4 LB/1000 BBL
FSII	Conductivity	A02

15 MONTH	P @ 310 0.1/5 0.0 93 5 .750/.520/.675/.648 142/141
HINOW 6	P @ 310 0.0/5 0.4 88 .39/.46/.425 0.0
3 МОИТН	P @ 310 0.2/6 0.0 99 .43/.47/.45
C MONTH	313°C Br Pt 0.1/4 0.2 90 .575/.635/.605 0.0 270 0.12
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

83-POSF-1718 (C&D) 5 Gallon Cans Room Temperature Storage

Systyl Bostonon Bebessal Ecceleral Sofford Rowspan (Kapanson Bostonon Register Bostonon Softonon)

volume %	1 ppm (ASA – 3 and Stadis – 450) 8.4 LB/1000	
FSII	Conductivity 1 AO2 8	

15 MONTH	P @ 310 0.1/5 0.0 93 525 .750/.520/.675/.648 0.0 142/141
HINON 6	P @ 310 0.1/5 0.4 93 .605/.70/.6525 0.32 200/200
3 MONTH	P @ 310 0.1/6 0.0 99 .555/.5525
O MONTH	.81
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .525/.545/.535

83-POSF-0722 (A&B) 5 Gallon Cans Oven Storage

general montrovino describiros describiros describiros describiros describiros describiros describiros describiros de constituiros de constitu

FSII	
Conductivity	1 ppm (ASA - 3 and Stadis - 450)
CI1	4 LB/1000 BBL

15 MONTH	P @ 280 0.5/3 0.0 72 1018/1073 30/35
9 MONTH	P @ 320 0.2/5 0.4 95 .38/.345/.362 0.64/0.80 220/214
3 MONTH	P @ 320 0.2/6 0.0 88 .435/.44/.4375
O MONTH	320°C Br Pt 0.2/4 0.2 78 .405/.136/.382 0.0 290 0.14
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides FSII

*6 month Lubricity 0.32/.335/.3275

83-POSF-0722 (C&D) 5 Gallon Cans Oven Storage

THE PROPERTY AND PROPERTY OF THE PARTY OF TH

	adis - 450)	
96	S	
0.10 - 0.15 volume	1 ppm (ASA - 3 and	4 LB/1000 BBL
FSII	Conductivity	CII

15 MONTH	P @ 280 1/5 1/5 3.4 56 (C) 538/460 (D) 538/460 20/21	
H L MONTH	P @ 320 0.2/5 0.0 94 .34/.35/.345 2.2/2.4 170/172	
3 MONTH	P @ 320 0.2/6 0.6 85 84/.415/.4275	
MONTH	P @ 320 0.1/4 0.0 90 .49/.34/.41	
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity	

*6 month Lubricity .31/.335/.3225

-POSF-0723 (A&B) 5 Gallon Cans 0ven Storage - 0.15 volume % 1 (ASA - 3 and Stadis - 450)	83-P 5 0 0 FSII 0.10 - Conductivity 1 ppm	
SF-0723 (A&B) Gallon Cans	83.	

15 MONTH	P @ 320 0.1/4 0.2	91	123/120
9 MONTH	P @ 320 0.2/5 0.6	100	220/230
3 MONTH	P @ 320 0.2/6 0.6	96 0.0	
O MONTH	P @ 320 0.1/4 0.4	74 0.0	(260 Drum)
TEST	JFTOT Particulates Existent Gum	Lubricity Water Separation Peroxides	Electrical Conductivity FSII

8	erinerineinen betoer bei		interactions.		
8					
8					
	•				
	•				
Secondary Commenced Seconds and Second					
				450)	
6				1	
Ÿ.				adis	
		&B) 5		d % St	
		-POSF-0724 (A&B) 5 Gallon Cans	age,	0.10 - 0.15 volume % 1 ppm (ASA - 3 and Stadis - 450) 4 LB/1000 BBL	
		0724 1on	Stor	5 vc - 3 BBL	BBL
		OSF- Gal	ven	0.1 (ASA 300	000
		83-P(Ó	10 - pm B/1(.B/1(
		ω		0 - 4	9
				ty	
				FSII Conductivity CI1	
EV.				I duct	
				FSI Con CI1	A03
į,	•				
8					
	•				
			333		

15 MONTH	P @ 320 0.2/5 0.6 93	0.415 108/109
9 MONTH	P @ 300 0.3/5 0.0 96	0.0 250/260
3 MONTH	P @ 320 0.2/6 0.4 96	0.0
O MONTH	P @ 310 0.1/4 0.0 79	0.0 (240 Drum)
TEST	JFTOT Particulates Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity FSII

83-POSF-0725 (A&B) 5 Gallon Cans Oven Storage

volume %	- 3 and Stadis - 450	BBL	BBL
0.10 - 0.19	1 ppm (ASA	4 LB/1000 I	
-SII	Conductivity	.11	104

15 MONTH	P @ 320	0.0 86	0.520 173/172
9 MONTH	P @ 320	1.2	0.0 220/220
3 MONTH	P @ 320	91.4	0.0
O MONTH	P @ 320	0.0 85	0.0 (305 Drum)
TEST	JFTOT Particulates	Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity FSII

83-POSF-0726 (A&B) 5 Gallon Cans Oven Storage

:	Stadis - 450)		
	I ppm (ASA - 3 and Stadis	4 LB/1000 BBL	6 LB/1000 BBL
FSII	Conductivity	CI1	A05

15 MONTH	P @ 320 0.1/4 0.6 84	0.0 137/141
HINOM 6	P @ 320 0.1/5 0.6 92	0.0 240/240
3 MONTH	P @ 300 0.2/6 0.2 88	0.0
O MONTH	P @ 320 0.2/4 0.0 74	0.0 (275 Drum)
TEST	JFTOT Particulates Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity FSII

83-POSF-O727 (A&B) 5 Gallon Cans Oven Storage

NESSENDED CANADAS POLICIONS DOVOVOS DESCRIPTOR DESCRIPT

10 - 0.15 volume % ppm (ASA - 3 and Stadis - 450) LB/1000 BBL LB/1000 BBL
0.10 - (1 ppm (4 LB/1006 6 LB/1006
FSII Conductivity CI1 A06

15 MONTH	P @ 320 0.1/4 0.6 84	0.0 137/141
9 MONTH	P @ 320 0.2/6 0.6 90	0.32 260/260
3 MONTH	P @ 320 0.2/6 0.0 84	0.0
O MONTH	P @ 300 0.1/4 0.6	0.0 (295 Drum)
TEST	JFTOT Particulates Existent Gum	Mater Separation Lubricity Peroxides Electrical Conductivity FSII

83-POSF-0728 (A&B) 5 Gallon Cans Oven Storage

AND TOTAL SECRETARY OF SECRETARY OF SECRETARY
15 MONTH	P @ 320 0.2/5 0.4 72	1.442 180/180
9 MONTH	P @ 320 0.1/5 0.2 93	0.16 355/360
3 MONTH	P @ 300 0.2/5 0.8 99	0.0
O MONTH	P @ 300 0.1/4 0.0 77	0.0 (300 Drum)
TEST	JFTOT Particulates Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity FSII

83-POSF-0729 (A&B) 5 Gallon Cans Oven Storage

ANSWER DEPOSITE TO THE PROPERTY OF THE PROPERT

15 MONTH	P @ 320	0.4	81	5.56	124/125
9 MONTH	P @ 320	0.0	96	0.0	260/260
3 MONTH	P @ 320	0.2	96	0.0	
O MONTH	P @ 320	9.0	82	0.0	(280 Drum)
TEST	JFTOT Particulates	Existent Gum	Water Separation Lubricity	Peroxides	Electrical Conductivity FSII

83-POSF-0730 (A&B) 5 Gallon Cans Oven Storage

TOTAL PROPERTY AND SOUTH A

15 MONTH	P @ 300 0.1/4 0.2 93 0.0 72/75	
9 MONTH	P @ 300 0.2/6 0.4 89 0.0/0.08	
3 MONTH	P @ 300 0.1/6 0.4 93	
O MONTH	P @ 300 0.1/5 0.6 63 0.0 (250 Drum)	
TEST	JFTOT Particulates Existent Gum Mater Separation Lubricity Peroxides Electrical Conductivity	

83-POSF-O761 (A&E) 5 Gallon Cans Room Temperature Storage

been percent overse seconds afficient besteen

FSII 0.10 - 0.15 volume % Conductivity 1 ppm (ASA - 3 and Stadis - 450)

15 MONTH	0 P @ 310 0.1/4 0.6 99 .4525 1.105/.605/.435/.715 0.0
9 MONTH	P @ 310 0.2/5 0.6 92 .460/.445/.4525 0.08 183/180
3 MONTH	P @ 310 0.1/6 0.4 97 0.53/.52/.525 0.0
O MONTH	P @ 310 0.1/5 0.6 92 0.815/.76/.787 0.0
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .565/.65/.6075

83-POSF-0761 (C&D) 5 Gallon Cans Room Temperature Storage

THE PARTY OF THE P

	- 450)
8 4	Stadis
0.10 - 0.15 volume	1 ppm (ASA - 3 and
FSII	Conductivity

15 MONTH	P @ 310 0.1/4 0.0 90 .910/.615/.435/.653 0.0 112/110
HLNOW 6	P @ 310 0.2/5 1.0 89 .44/.49/.465 0.0 170/170
3 MONTH	P @ 310 0.3/6 0.0 99 .555/.59/.5725 0.0
MONTH	P @ 310 0.1/5 0.4 89 .525/.48/.502 0.0
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .59/.54/.565

83-POSF-1064 (Petroleum) (A&B) 5 Gallon Cans Oven Storage

CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

SPECIFICATION

DESTITUTION OF MONTH STRUNTIN TO STRUNT
51 a

83-POSF-1064 (Petroleum) (C&D) 5 Gallon Cans Room Temperature Storage

AND INCOMES SERVICE TO THE PROPERTY OF THE PROPERTY OF THE TAIL OF THE PROPERTY OF THE PROPERT

SPECIFICATION

TESTING RESULTS (C&D)

15 MONTH	P @ 310 0.1/4 0.0 89 .320/.315/.3175 0 150/150
9 MONTH	P @ 310 0.1/5 0.0 86 .355/.335/.345 0.24 485/490
3 MONTH	P @ 310 0.2/6 0.0 79 .345/.345/.345
O MONTH	P @ 310 0.1/5 0.0 85 .47/.435/.452
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .41/.365/.3875

83-POSF-1130 (A&B) 5 Gallon Cans Room Temperature Storage

toes a resolution consister consister consister and and

0.10 - 0.15 volume %	8.4 LB/1000 BBL	8 LE/1000 BBL
FSII	A02	CI1

15 MONTH	P @ 290 0.1/5 0.6 92	33/34
HINOM 6	P @ 310 0.3/8 1.0 82	3/0
3 MONTH	P @ 290 0.1/5 0.0 81	
O MONTH	P @ 320 0.2/5 0.6 75	
TEST	JFTOT Particulates Existent Gum Water Separation	Peroxides Electrical Conductivity FSII

				15 MONTH	P @ 310 0.1/5 0.4 95	3/3
				H LNOW 6	P @ 310 0.1/5 0.0 88	0/3
	83-POSF-1131 (A&B) 5 Gallon Cans m Temperature Storage	volume% BBL BL	TESTING RESULTS (A&B)	3 MONTH	P @ 290 0.1/4 0.4 86	
andahaan essakaa	83-POSF-17 5 Gallo Room Temperat	0.10 - 0.15 volume % 8.4 LB/1000 BBL 8 LB/1000 BBL	TESTING RE	O MONTH	P @ 310 0.1/4 0.0 88	
		FSII A01 CII		TEST	JFTOT Particulates Existent Gum Mater Separation Lubricity	Peroxides ical Conductivity FSII
6 Reserves 1777					P. P	Electr

83-POSF-1132 (A&B) 5 Gallon Cans Room Temperature Storage

•	Stadis - 450)		
volume	1 ppm (ASA - 3 and	8.4 LB/1000 BBL	8 LB/1000 BBL
FSII	Conductivity	A01	CII

15 MONTH	P @ 290 0.2/5 0.0 86 .300/.310/.305 114/116
9 MONTH	P @ 310 0.4/6 0.0 56 .32/.31/.315 160/160
3 MONTH	P @ 290 0.2/6 0.4 74 .31/.305/.3075
O MONTH	P @ 310 0.2/4 0.4 72 .31/.305/.307
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .345/.35/.3475

83-POSF-1133 (A&B) 5 Gallon Cans Room Temperature Storage

% Stadis - 450)
0.10 - 0.15 volume % 1 ppm (ASA - 3 and St 8.4 LB/1000 BBL 8 LB/1000 BBL
FSII Conductivity A01 CI2

15 MONTH	P @ 310 0.3/5 0.2 73	273/269
9 MONTH	P @ 310 0.2/5 0.0 65	220/220
3 MONTH	P @ 290 0.1/5 0.6 90	
O MONTH	P @ 300 0.3/5 0.0 81	
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity	Peroxides Electrical Conductivity

83-POSF-1134 (A&B) 5 Gallon Cans Room Temperature Storage

ACTION TO THE CONTRACT OF THE PARTY OF THE P

% Stadis - 450)
0.10 - 0.15 volume % 1 ppm (ASA - 3 and S 8.4 LB/1000 BBL 8 LB/1000 BBL
FSII Conductivity A01 CI3

TEST	H WONTH	3 MONTH	HINOM 6	15 MONTH
JFTOT	P @ 310	P @ 290	P @ 310	P @ 310
Particulates	0.2/5	0.1/5	0.1/6	0.1/4
Existent Gum	0.0	0.2	0.2	3.2
Water Separation	63	56	44	29
Lubricity				
Peroxides				
Electrical Conductivity			203/200	146/147
FSII				

83-POSF-1135 (A&B) 5 Gallon Cans Room Temperature Storage

CONTINUE CONTINUES ACCORDED VARIABLE

PARTIE DE PROPERTO DE LA CONTRACTA DE CONTRA

- 0.15 volume %	alia Stauls -	
15 4	- 00C) BBL
	8.4 LB/1000 BBL	8 LB/1000
0.10	٦ % چ 4	8 LB
FSII	Conductivity A01	014

15 MONTH	P @ 310 0.2/4 0.0 67	106/108
9 MONTH	P @ 310 0.3/6 0.0 58	135/140
3 MONTH	P @ 310 0.1/6 0.0 61	
O MONTH	P @ 310 0.3/4 0.6 71	
TEST	JFTOT Particulates Existent Gum Water Separation	Peroxides Electrical Conductivity FSII

83-POSF-1136 (A&B) 5 Gallon Cans Room Temperature Storage

TESTING RESULTS (A&B)

15 MONTH	P @ 310 0.2/4 0.6 81	80/80
HINOM 6	P @ 310 0.3/6 1.2 60	77/67
HINOM 9	P @ 310 0.1/5 0.4 77	
O MONTH	P @ 320 0.2/4 0.6 86	
TEST	JFTOT Particulates Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity FSII

Province Control of State Control

83-POSF-1137 (A&B)
5 Gallon Cans
Room Temperature Storage
FSII 0.10 - 0.15 volume %

ume % and Stadis - 450)
0.10 - 0.15 volume 1 ppm (ASA - 3 and 8.4 LB/1000 BBL 3 LB/1000 BL
FSII Conductivity A01 CI2

15 MONTH	P @ 310 0.3/4 0.4 88 .395/.365/.38	
9 MONTH	P @ 310 0.2/6 0.2 79 .365/.365/.365	
3 MONTH	P @ 310 0.1/6 0.0 95 .43/.56/.495	
O MONTH	P © 310 0.5/4 0.4 91 .38/.47/.425	
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

83-POSF-1138 (A&B) 5 Gallon Cans Room Temperature Storage

FSII	.10 - 0.15 volume %
Conductivity	I ppm (ASA - 3 and Stadis - 450)
A01	8.4 LB/1000 BBL
CI1	8 LB/1000 BBL
JFA-5	4 LB/1000 BBL

15 MONTH	P @ 310 0.2/5 0.6 56	115/118
HINOW 6	P @ 310 0.2/6 0.6 41	66/96
3 MONTH	P @ 300 0.1/7 0.6 57	
O MONTH	P @ 310 0.1/3 0.8 39	
TEST	JFTOT Particulates Existent Gum Water Separation	Peroxides Electrical Conductivity FSII

STATE OF THE PROPERTY OF THE P

9-6	Stadis - 450)		
0.10 - 0.15 volume %	1 ppm (ASA - 3 and Stadis	8.4 LB/1000 BBL	8 LB/1000 BBL
FSII	Conductivity	A02	CII

15 MONTH	P @ 310 0.3/4 0.0 95 .320/.305/.3125
9 MONTH	P @ 310 0.2/5 0.6 67 .325/.31/.3175
3 NONTH	P @ 310 0.1/6 0.0 88 .31/.305/.3075
HLNOW O	P @ 310 0.1/3 0.8 87 .27/.32/.295
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

83-POSF-1140 (A&B) 5 Gallon Cans Room Temperature Storage

the property of the second seconds are seconds and the second seconds and the second s

dis - 450)
% Stadis
0.10 - 0.15 volume 1 ppm (ASA - 3 and 8.4 LB/1000 BBL 8 LB/1000 BBL
FSII Conductivity AO2 CI2

15 MONTH	P @ 310 0.1/4 0.0 89 .315/.310/.3125
9 MONTH	P @ 310 0.1/5 0.0 81 .335/.335/.335
3 MONTH	P @ 310 0.2/6 0.0 87 .335/.34/.3375
O MONTH	P @ 310 0.4/5 0.0 78 .37/.35/.36
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

WWW. Paranta Province production	فالمستخففة فالمخففة	
<u>X</u> .X.A.		
<u>CONSTRA</u>	_	83-POSF-1141 (A&B) 5 Gallon Cans Room Temperature Storage
	FSII Conductivity AO2 CI3	0.10 - 0.15 volume % 1 ppm (ASA - 3 and Stadis - 450) 8.4 LB/1000 BBL 8 LB/1000 BBL

15 MONTH	P @ 290 0.2/4 0.0 76	.335/.203/.345/.315
9 MONTH	P @ 310 0.2/5 0.0 63	. 345/ . 395/ .
3 MONTH	P @ 310 0.2/6 0.4 81	.44/.455/.44/5
O MONTH	P @ 310 0.3/4 0.6 73	.5757.4037.53
TEST	JFTOT Particulates Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity FSII

83-POSF-1142 (A&B) 5 Gallon Cans Room Temperature Storage

general expensive expensive consistent expensive essential expensive expensi

ume % and Stadis - 450)	
0.10 - 0.15 volume % 1 ppm (ASA - 3 and St 8.4 LB/1000 BBL 8 LB/1000 BBL	
FSII Conductivity AO2 CI4	

TESTING RESULTS (A&B)

15 MONTH	P @ 310 0.2/4 0.8 74 .325/.3225	168/173
9 MONTH	P @ 310 0.0/5 0.8 73 .345/.335/.34	157/157
3 MONTH	P @ 310 0.1/6 0.8 88 .44/.45/.445	
O MONTH	P @ 310 0.2/4 0.6 66 .37/.335/.352	
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity	Electrical Conductivity

96

83-POSF-1143 (A&B) 5 Gallon Cans Room Temperature Storage

graph Leterconnection of the contraction of the secretary second of the
0.10 - 0.15 volume %	1 ppm (ASA - 3 and Stadis - 450)	8.4 LB/1000 BBL	8 LB/1000 BBL	2 LB/1000 BBL
FSII	Conductivity	A02	CII	Metal Deactivator

TEST	O MONTH	3 MONTH	9 MONTH	15 MONTH
JFT0T Dawticulates	P @ 310	P @ 310	P @ 310 0.276	P @ 310 0.3/5
Existent Gum Water Separation	0.0	91	0.0 57	67
Peroxides Electrical Conductivity FSII			25/60	28/30

83-POSF-1144 (A&B) 5 Gallon Cans Room Temperature Storage

ANNE CONTRACTOR CONTRA

- 450)
% Stadis
0.10 - 0.15 volume 1 ppm (ASA - 3 and 8.4 LB/1000 BBL 3 LB/1000 BBL
FSII Conductivity AO2 CI1

TESTING RESULTS (A&B)

15 MONTH	P @ 310 0.2/4 0.2 94 .330/.350/.340
9 MONTH	P @ 310 0.1/6 0.4 72 .35/.36/.355
3 MONTH	P @ 310 0.3/6 0.4 92 .43/.41/.42
O MONTH	P @ 310 0.3/5 0.0 83 .365/.365
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

98

0.10 - 0.15 volume % 1 ppm (ASA - 3 and Stadis - 450) 8.4 LB/1000 BBL 3 LB/1000 BBL
0.10 1 ppm 8.4 L 3 LB/
FSII Conductivity AO2 CI2

		83-P0 5 Room Tem	83-POSF-1145 (A&B) 5 Gallon Cans m Temperature Storage			
		FSII 0.10 - Conductivity 1 ppm (AO2 8.4 LB/ CI2 3 LB/10	0.10 - 0.15 volume % 1 ppm (ASA - 3 and Stadis 8.4 LB/1000 BBL 3 LB/1000 BBL	- 450)		
		TESTIN	TESTING RESULTS (A&B)			
99	JEST JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII	O MONTH P @ 310 0.3/5 0.0 84 .37/.475/.422	3 MONTH P @ 310 0.2/6 0.4 93 .46/.49/.475	9 MONTH P @ 310 0.2/6 0.4 77 0.375/.375/.375	15 MONTH P @ 310 0.3/4 0.2 90 .360/.350/.355	

83-POSF-1146 (A&B) 5 Gallon Cans Room Temperature Storage

the manager of the second of t

1 Stadis - 450)
0.10 - 0.15 volume 1 ppm (ASA - 3 and 8.4 LB/1000 BBL 3 LB/1000 BBL
FSII Conductivity AO2 CI3

15 MONTH	P @ 310 0.1/5 0.4 86 .410/.425/.4175 107/107
9 MONTH	P @ 310 0.1/5 0.0 95 .405/.41/.4075 140/140
3 MONTH	P @ 310 0.1/6 0.0 81 .40/.445/.4225
O MONTH	P @ 310 0.2/4 0.4 83 .44/.445/.442
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .48/.425/.4525

83-POSF-1147 (A&B) 5 Gallon Cans Room Temperature Storage

_
450
1
volume % - 3 and Stadis BBL
0.15 volume % (ASA - 3 and Si,/1000 BBL
volo
15 A - 00 BB
- 0.15 (ASA . B/1000 1000 Bl
0.10 - 0.15 v 1 ppm (ASA - 8.4 LB/1000 B 3 LB/1000 BBL
0-1-8-6
SII onductivity 02 I4
luct
FSII Condi A02 CI4

15 MONTH	P @ 310 0.2/5 0.0 88 .430/.395/.4125
HINOW 6	P @ 310 0.1/6 0.4 77 .355/.345/.35
	P @ 310 0.0/6 0.2 90 .44/.435/.4375
O MONTH	P @ 310 0.3/4 0.4 90 .41/.475/.442
TEST	JFTOT Particulates Existent Gum Water Separation *Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .410/.415/.4125

83-POSF-1148 (A&B) 5 Gallon Cans Room Temperature Storage

SPATEL PROTECTION PRODUCED EXCERTED FOR SECURITION OF SECURITION SECURITION SECURITION SECURITION SECURITION S

% Stadis - 450)	
0.10 - 0.15 volume % 1 ppm (ASA - 3 and St 8.4 LE/1000 BBL	8 LB/1000 BBL 4 LB/1000 BBL
FSII Conductivity AO2	CI1 JFA-5

15 MONTH	P @ 310 0.3/5 0.0 61	89/69
9 MONTH	P @ 310 0.1/6 0.2 40	220/220
3 MONTH	P @ 310 0.2/7 0.0 55	
H WONTH	P @ 310 0.1/4 1.0 49	
TEST	JFTOT Particulates Existent Gum Water Separation Lubricity	Peroxides Electrical Conductivity FSII

83-POSF-1149 (A&B) 5 Gallon Cans Oven Storage

THE PROPERTY OF THE PROPERTY O

- 450)
olume % 3 and Stadis BBL
0.10 - 0.15 volume % 1 ppm (ASA - 3 and St 4 LE/1000 BBL 16.8 LB/1000 BBL
FSII Conductivity CI1 AO2

15 MONTH	P @ 320 0.3/5 0.0 85	0.0 100/99
HINOM 6	P @ 320 0.2/5 0.4 87	0.0 190/189
3 MONTH	P @ 320 0.1/5 0.2 94	0.0
O MONTH	P @ 310 17.2/4 0.0 80	0.0
TEST	JFTOT Particulates Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity FSII

~	
450	
ı	
volume % - 3 and Stadis BL	
- 0.15 volume (ASA - 3 and 1000 BBL) BBL
0 - 0.15 ve pm (ASA - 3 B/1000 BBL	6.8 LB/1000
0.10 - 1 ppm (4 LB/10	16.8
ivity	
FSII Conductivity CII	A03

				15 MONTH	P @ 300 0.2/5 0.0 96	0.0 129/123
30 (133) (134) (134) (134) (134) (134) (134) (134) (134) (134) (134) (134) (134) (134) (134) (134) (134) (134)		(0		9 MONTH	P @ 320 0.3/5 0.4 98	0.0 250/240
	83-POSF-1150 (A&B) 5 Gallon Cans Oven Storage	5 volume % 1 - 3 and Stadis - 450) BBL 000 BBL	TESTING RESULTS (A&B)	3 MONTH	P @ 320 0.2/5 0.0 94	0.0
sesses recognized	83-POSF- 5 Gal Oven	FSII 0.10 - 0.15 volume % Conductivity 1 ppm (ASA - 3 and St CII 4 LB/1000 BBL A03	TESTING R	O MONTH	P @ 320 0.1/4 0.2 84	0.0
		FSII Cond CII AO3		TEST	JFTOT Particulates Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity FSII
					104	

FSII Conductivity	0.10 - 0.15 volume % 1 ppm (ASA - 3 and Stadis - 450) 4 FR/1000 RR
A04	6.8 LB/10

	ensemble to the second	eg un pre samel Historia Servici ert hil ere	en vinem e	a gen den g		
95995 38066056 3333		(0		9 MONTH	P @ 320 0.5/5 0.6 90	0.0 230/232
>>>>	-POSF-1151 (A&B) 5 Gallon Cans Oven Storage) - 0.15 volume % mm (ASA - 3 and Stadis - 450) //1000 BBL 8 LB/1000 BBL	ING RESULTS (A&B)	3 MONTH	P @ 300 0.0/6 0.2 96	0.0
33555	83-P0SF 5 Ga 0ven	FSII 0.10 - 0.0 Conductivity 1 ppm (AS, CII 4 LB/1000 A04 16.8 LB/10	TESTING	O MONTH	P @ 320 0.2/5 0.0 92	0.0
		FSI Con CII A04		TEST	JFTOT Particulates Existent Gum	Lubricity Peroxides Electrical Conductivity FSII
332 New					105	
						de la companya de la

83-POSF-1152 (A&B.)
5 Gallon Cans
Oven Storage

	- 3 and Stadis - 450)		
	1 ppm (ASA - 3 and	4 LB/1000 BBL	16.8 LB/1000 BBL
FSII	Conductivity	CI1	A05

9 MONTH	P @ 320 0.3/6	96 96	0.0	•
3 MONTH	P @ 320 0.0/6	0.0	0.0	
O MONTH	P @ 310 0.1/4	0.0 92	0.0	
TEST	JFTOT Particulates	Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity	FSII

83-POSF-1153 (A&B) 5 Gallon Cans Oven Storage

general ensuspense described by the properties of the properties and properties and properties and properties of the pro

450)
•
volume % - 3 and Stadis BL O BBL
g g
Jun 3 ar 3BL
1.15 ISA 100 100
- 501/3 - 100/3
0.10 - 0.15 volume % 1 ppm (ASA - 3 and St 4 LB/1000 BBL 16.8 LB/1000 BBL
0.14
FSII Conductivity CII A06
ıcti
FSII Condu CII A06
F.O.O.A

HUNOM 6	P @ 320 0.2/6 0.0 86	09/65 29/60
3 MONTH	P @ 320 0.2/6 0.0 75	0.0
O MONTH	P @ 320 0.2/4 0.0 82	0.0
TEST	JFTOT Particulates Existent Gum	Lubricity Peroxides Electrical Conductivity FSII

83-POSF-1154 (A&B) 5 Gallon Cans Oven Storage

estimate antitional antition of the secretary antitional antitional

	2
450)	
ı	
% I Stadis	
n d	
volume - 3 and	표
> '	ے ص
15 A	800
10 - 0.15 volume % ppm (ASA - 3 and St	LB/1000 BBL .8 LB/1000
	75
0.10	4 LB/1000 BBL 16.8 LB/1000 BBL
0.1	16
itv	?
SII Sonductivity	•
ict) }
II	17
FSI I Cond	C111 A07

9 MONTH	P @ 320 0.4/5 0.2 94	0.48 280/280
3 MONTH	P @ 300 0.1/4 0.8 86	0.0
HINOW O	P @ 300 0.2/4 0.4 89	0.0
TEST	JFTOT Particulates Existent Gum	Lubricity Peroxides Electrical Conductivity FSII

83-POSF-1155 (A&B) 5 Gallon Cans Oven Storage

THE PERSONAL PROPERTY OF THE PERSONAL PROPERTY

% Stadis - 450)	
0.10 - 0.15 volume % 1 ppm (ASA - 3 and Stadis -	4 LB/1000 BBL 16.8 LB/1000 BBL
FSII Conductivity	C11 A08

9 MONTH	P @ 320 0.1/6 0.6 92	3.4/3.0 170/170
3 MONTH	P @ 320 0.1/6 0.4 93	0.0
O MONTH	P @ 300 0.2/4 0.4 89	0.0
TEST	JFTOT Particulates Existent Gum	Lubricity Peroxides Electrical Conductivity FSII

83-POSF-1156 (A&B) 5 Gallon Cans Oven Storage

gerral possessa armandal enecessa kerenda arcketerana arcketeran andahar arcketer arcketer films.

0.10 - 0.15 volume %	4 LB/1000 BBL
1 ppm (ASA - 3 and Stadis - 450)	16.8 LB/1000 BBL
FSII	C11
Conductivity	A01

HINOM 6	P @ 300 0.3/5 0.4 77	0.32 90/88
3 MONTH	P @ 300 0.1/5 0.8 88	0.0
O MONTH	P @ 300 0.2/4 0.0 76	0.0
TEST	JFTOT Particulates Existent Gum Water Separation	Lubricity Peroxides Electrical Conductivity FSII

84-POSF-1710 (A&B) 5 Gallon Cans Oven Storage

Second Responses Company Seconds Response Respon

ergululan perenden kerrengan berrangan berrang

450)
4
volume % 3 and Stadis L
and
0.18 ASA 000 B00
1 2 5
0.10 1 ppn 4 LB/ 6 LB/
SII onductivity Il 09
FSII Cond CII A09

15 MONTH	P A 320 0.14 0.0 89 .34/.36/.35 1.553/1.740
9 MONTH	P @ 320 0.2/6 0.8 81 81 .33/.34/.335 0.64 205/200
3 MONTH	P @ 320 0.2/5 0.6 88 .395/.34/.3675 0.0
O MONTH	No Data
TEST	JFTOT Particulates Existent Gum Water Separation Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .335/.355/.345

84-POSF-1711 (A&B) 5 Gallon Cans Oven Storage

Participal Properties - Participal Participa

0.10 - 0.15 volume %	1 ppm (ASA - 3 and Stadis - 450)	4 iB/1000 BBL	16.8 LB/1000 BBL
FSII	Conductivity	CI1	409

15 MONTH	P @ 320 0.3/5 0.8 57 .325/.330/.3275 1.783/2.830 27/30
9 MONTH	P @ 320 0.3/5 0.6 57 57 .325/.33/.3275 0.880 115/114
3 MONTH	P @ 320 0.4/4 0.4 65 .40/.39/.395
O MONTH	No Data
TEST	JFTOT Particulates Existent Gum Water Separation Lubricity Peroxides Electrical Conductivity FSII

*6 month Lubricity .355/.330/.342

APPENDIX D TOTAL INSOLUBLES TEST PROCEDURES

FUEL STORAGE STABILITY

Objective: To determine the amount of total insolubles which result from

stressing fuel samples at a temperature of 43°C.

Test Schedule: Two tests and one blank for each fuel sample at each test

period.

Test Periods

Time at 43°C Equivalent Time at Ambient

0 weeks 0 years

13 weeks 1 year

26 weeks 2 years

39 weeks 3 years

Equipment/Supplies:

OF THOUSEN TO DO THE WASHINGTON TO SEE THE SECRETARY OF THE SECRETARY TO SECRETARY

Analytical Balances (2)

- a. Mettler Balance (for filter weighing)
- b. B-5C1000 (J9000/JH0975) Balance
- 2. Drying oven either of the blue drying ovens that were located in the labs of Bldg 59C.
- 3. Stressing oven the yellow oven for long term fuel storage which used to be in Bldg 59C lab annex. Oven should be capable of 43 \pm 1°C for extended periods of time.
- 4. Petri dishes, glass, to hold 47 mm filter, with lid.
- 5. Forceps, flat-bladed, non-pointed tip.
- 6. Solvents, HPLC methanol and toluene in a filtered wash bottle.
- 7. Iso-octane, HPLC in filtered wash bottle.
- 8. Filters, one test and one control filter for each 400 ml fuel sample, 47 mm diameter, nominal pore size 0.8 um.
- 9. Erlenmeyer flasks, 500 ml, 12 for each fuel to be tested, with caps and teflon liners.
- 10. Dishwasher
- 11. Aluminum foil
- 12. Carbide etching pen
- 13. Laboratory filtration apparatus (See Figure 1)

Preparation of Sample Containers:

- -Initially number each 500 ml Erlenmeyer flask (screw top, borosilicate) with a carbide etching pen.
- -Rinse flasks, caps, and liners with an equal volume mixture of methanol and toluene from a filtered wash bottle.
 - Put flasks into dishwasher for normal cycle.
 - Repeat rinse cycle on dishwasher (note: dishwasher uses distilled water).
- Place flasks, caps and liners in drying oven at $110^{\circ} \pm 10^{\circ}$ C for at least 8 hours (caps, liners, flasks need not be assembled.)
 - -Place teflor lined caps loosely on containers and cool overnight.
 - -Cover flasks or place in cabinet to avoid airborne dust.

Note: Technique is very important in this test since the amount of sediment and gum may be less than 1 mg. All containers should be wiped off with a clean dry towel before weighing to remove any airborne dust.

Procedure for Testing for Insolubles:

- 1. Weigh the cleaned, cool, marked 500 ml Erlenmeyer flasks (without lids) making sure to use proper technique in order to avoid fingerprints and oil on the flasks. A "B-5C1000 (J9000/JH0975) Balance (1000 grams max.) should be used for this weighing. Each fuel sample to be tested will require twelve different flasks; one for the test, one for the duplicate and one for the blank, for each of four testing periods.
- 2. Fill each test and duplicate flask with 400 ml (four hundred) of each fuel to be tested. Blanks should be prepared as in Step 7. Securely tighten the teflon-lined caps onto the containers and wrap flasks with aluminum foil. Place containers in the stressing oven at a temperature of 43°C ($^{\pm}$ 1°C). Leave samples in oven with minimal disturbances until times indicated in the test schedule. (The samples to be tested at 0 weeks will not be stressed at all).
- 3. At the end of each testing period, remove samples from oven and allow to cool overnight.
- a. Two 47 mm diameter filters of nominal pore size 0.8 μ m are required for each flask. One filter is a test filter and one is a control filter. Each of these filters should be placed in a clean, dry Petri dish (with lid) and appropriately marked.

- b. After having used forcepts to lay each filter in a clean Petri dish, place dish and filter, with lid slightly ajar in drying oven at 11 °C for 30 minutes to remove water adsorbed from the atmosphere onto the filter. With the lid still slightly ajar, remove dishes from oven and allow filters to come to equilibrium with the atmosphere (about 30 more minutes). Carefully weigh each filter on a mettler balance which will weigh to the nearest 0.1 mg without interpolation and return weighed filters to respective Petri dishes. Record weights.
- 4. The laboratory filtration apparatus is shown in Figure 1 below:

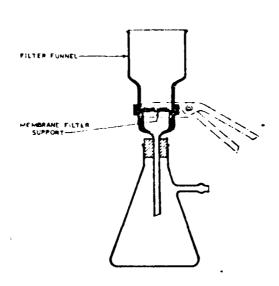


Figure 1 Apparatus for Determining Total Contaminant Bottle Samples

- a. Using a clean forcep, assemble the filtering apparatus with the control filter under the test filter (both already weighed).
- b. Wet both filters with approximately 100 ml of the filtered flushing fluid. (Note: it is not necessary to use an exact amount of iso-octane for this rinsing of filters. It is, however, important to use the same amount of solvent for each determination. Therefore, if a total volume of 400 ml (exactly) 100 ml for this rinse and 300 ml for step 4e is used, one can control the amount of solvent for each determination.
- c. Shake the sample container vigorously for about 30 seconds. Remove the cap and any external contaminant that may be present in the threads on the sample contianer by washing with filtered flushing fluid. Ensure that none of the washings enter the container.

- d. Pour some of the sample into the filter funnel. Apply vacuum to the flask and maintain a liquid head in the funnel until completion of filtration by suitable transference of the remainder of the sample, agitating the sample container before each addition. Disconnect the vacuum and record the volume of filtered sample.
- e. Use 250 to 300 ml of filtered flushing fluid in this and the succeeding paragraph. Wash the sample container with four 50 ml quantities of filtered flushing fluid to complete transference of the contaminant to the filter.
- f. Wash down the inside of the funnel with filtered flushing fluid. With the vacuum applied, carefully remove the clamp and funnel. Wash the periphery of the filter by directing a gentle stream of flushing fluid from the edge to the center, taking great care not to wash any of the contaminant from the surface of the test filter. Maintain vacuum after the final washing only for the few seconds necessary to remove excess fluid from the filter.
- g. Using clean forceps, carefully remove the test and control filters from the filter base and place them in a clean covered Petri dish, taking care not to disturb the contaminant on the surface of the filters. Repeat the procedure described in 3b. (May need to allow up to 4 hours for filters to dry in oven).
- 5. The change in weight of the dry test filter contaminant minus the change in weight of the control filter is equal to the weight of filterable sediments in the fluid.
- 6. To determine the amount of adherent gum, allow the container to dry in the oven (described in 3b) overnight. After allowing container to cool for at least four hours, weigh flask (without lids or foil) and subtract original weight of container at the start of the test. (Again, make sure not to contaminate flask with fingerprints or oil).
- 7. Blanks for this test should be treated exactly as the other samples in the test. The same amounts of filtered flushing sluid should be used as in steps 4b, 4e, and 4f. Weight changes should be subtracted from values for adherent gum (whether positive or negative).
- 8. Total insoluables is the sum of filterable sediment and adherent gum.
- 9. If any instructions are not clear, or if any changes seem advisable, please contact me before proceding.

Richard (Striebich RICHARD C. STRIEBICH, 2LT, USAF

Fuels Branch, Fuels and Lubrication Division

Aero Propulsion Laboratory